UK Semiconductor Infrastructure Initiative Feasibility Study

Summary of findings

31 October 2023

UK Semiconductor Infrastructure Initiative

- The newly formed Department for Science, Innovation and Technology (DSIT) has commissioned a study to understand the technical and economic feasibility of developing specific capabilities to support **commercial R&D**, grow the UK semiconductor sector and contribute to supply chain resilience.
 - WP1 Silicon manufacturing capability to support prototyping
 - WP2 Advanced packaging capability
 - WP3 Compound open-access foundry capability ۲
 - WP4 Design IP/tooling capability

Department of Engineering

WP5 - Strategic coordination capability that would provide an institutional framework around the infrastructure components

Process for evidence gathering and timeline

CAMBRIDGE Department of Engineering

WP1 - Silicon manufacturing capability to support prototyping

Silicon manufacturing capability to support prototyping – User Needs

Types of chips and the node sizes required

(Ignoring the totals, the figure in each cell represents number of organisations requiring a type of IC at a particular node size. The totals indicate overall level of need)

			Node sizes							
		>90nm	90-65nm	45-28nm	22-20nm	18-10nm	7-5nm	3nm	<3nm	Total
	Analog/mixed signal	18	14	16	14	5	6	3	1	77
Type of IC	Digital	7	8	12	14	8	9	7	4	69
	Photonics	7	5	3	4	1	0	0	0	20
	MEMS	6	2	2	2	1	0	0	0	13
	Memory (including next generation)	4	3	4	6	6	5	3	1	32
	Total	42	32	37	40	21	20	13	6	

45 organisations responded

Important process technologies

(values represent number of organisations)

WP1 implementation model options

Implementation model category	Model 1 (CMOS in UK-based	facility + post-processing in UK)	Model 3 (CMOS via overseas access + post- processing in UK)	'Do nothing' model
Implementation model option	 1.1 - CMOS from UK facility set up by the UK (and built entirely by a UK entity); + Post-processing in the same UK facility 	 1.2 – CMOS from UK facility set up by established foundry (e.g., GF); + Post-processing in the same UK facility 	3.1 - CMOS from overseas foundry, e.g., TSMC(via aggregator, IMEC);+ Post-processing in a UK facility	Allow people to continue with what they presently do
Node sizes	65-28nm	All node sizes? Depends on deal with established foundry (Down to 14nm, if GF?)		via established foundries (e.g., TSMC), aggregators
Additional description	'Minimum viable fab' model - adequate for prototyping and low-volume manufacturing to meet UK demand	Scope and volume would be dependent on deal struck with established foundry	'Minimum viable fab' model - adequate for prototyping and low-volume manufacturing to meet UK demand	programmes (e.g., Europractice)
Capability	Prototyping + Low-volume manufacturing	Prototyping + Low-volume manufacturing	Prototyping + Low-volume manufacturing	
Additional	 + Defence and other CNI sovereign capability; + supply chain resilience delivery as needed (limited) 	 + Defence and other CNI sovereign capability; + supply chain resilience delivery as needed (limited) 	 + Defence and other CNI sovereign capability; + supply chain resilience delivery as needed (limited) 	
capabilities	+ Silicon photonics line (65nm) for prototyping and piloting in UK post- processing facility	+ Silicon photonics line (65nm) for prototyping and piloting in UK post- processing facility	+ Silicon photonics line (65nm) for prototyping and piloting in UK post-processing facility	
Additional comments	It would be beneficial to license the manufacturing process from an organisation that has good experience in setting up fabs and processes, e.g IMEC.	Might take a shorter time to establish that trying to do it ourselves (i.e., 1.1). Key question: would this be attractive to GF? This might require a sweetheart deal between the foundry and UK government (cf. Germany TSMC arrangement)	It is feasible for UK to buy CMOS chips and slots from TSMC. TSMC unlikely to be happy to deal with us directly due to low volumes, and ask us to deal with an aggregator, i.e., IMEC. (IMEC itself uses this approach. It gets its CMOS chips from TSMC and does the post-processing in-house)	

Assumptions

- In 1.1., the same equipment will be used for CMOS fabrication and post-processing.
 - Some additional equipment might be necessary for post-processing, e.g. sputtering for metalisation layers etc.
 - Therefore for 1.1., CMOS and post-processing would share majority of the equipment
- In 1.2., the post-processing would be in the same facility as the CMOS. However, the post-processing would be on a separate 'line'.
 - Therefore for 1.2, CMOS and post-processing will not be sharing equipment
- In all three models, Si Photonics would be in the same facility as CMOS post-processing.
 - There will be restrictions on which equipment can be shared between CMOS post-processing and Si Photonics to prevent cross-contamination.
 - Based on discussions, Si Photonics only requires 65nm. If equipment is to be shared, this
 assumes that Si Photonics will be done on non-critical lithography equipment (assuming critical
 lithography equipment goes down to 28nm)

Proposed scope of Silicon Prototyping and Piloting capability

WP2 - Advanced packaging capability

Advanced packaging capability – User Needs

74 companies responded to Advanced Packaging part of the survey

- Wafers sales
- System sales
- Licensing Other

Unpackaged chip sales - Packaged device sales

NOW	Power	RF/Microwave	Photonics	Digital electronics	Sensors	Sum
Ceramic	5	6	7	2	4	24
Component	13	10	19	10	11	63
Metal	3	4	6	3	7	23
Plastics+	4	6	2	2	6	20
Grand Total	25	26	34	17	28	

FUTURE	Power	RF/Microwave	Photonics	Digital electronics	Sensors	Sum
Ceramic	2	3	3	0	1	9
Component	3	3	5	0	0	11
Hetro	1	1	1	0	0	3
Metal	1	0	2	0	0	3
Plastic+	1	2	2	2	2	9
Grand Total	8	9	13	2	3	

The values represent the total number of entries of materials processed in each packaging application area.

Packaging testing requirements

Environmental e.g. humidity, temperature, thermal, moisture incl. accelerated environmental e.g. damp heat, life test, burn-in, accelerated stress test	Electrical, ESD	Mechanical testing (vibration, bump, shock)	Hermeticity, pressure, leak testing	Other (e.g. radiation cryogenic, RF characterisation, residual gas analysis, attachment strength)	Generic reliability (a combination of all others)
26	19	17	6	9	8

*The values represent the total number of entries. Total number of companies responded: 24

Top 3 challenges							
Manufacturing challenges	 Shelf-life, cleanliness, precise application, temperature and humidity control, mechanical/optical stability of assembly equipment, deformation and heating, form factor, integration in wider system, etc. Lack of equipment to exploit in volume 						
Innovativeness and R&D	 Development of novel materials for thermal management, conductivity and ease of use Access to substrate design capability 						
Supply chain related challenges	 Long lead time for substrate delivery Availability of silicon carbide as bare die for packaging without large minimum order quantities General quality, reliability, and security of supply Lead times of supply 						

Key market gaps and failures in respect to advanced packaging

1. Scale-up and translation from low to high volume

- Most UK companies focus on the high value design, prototyping and low volume production.
- Transition to volume challenges are finding automation partners, investment, low ROI.
- Only few players are doing high volume integration in UK, e.g., Seagate and CIL.

Current market adaptation:

- 1. Start-ups targeting volumes go to Asia (prompted by investors).
- 2. Asian integrators confirm potential interest when at volume but are not focused on design/ prototyping.
- 3. After Asian exploration, start-ups find way back to the UK packaging design houses.

Conclusion: Market failure is in efficiency of those start-up finding packaging design houses in the UK and affording their services.

Potential intervention on international collaboration:

- Streamline and actively facilitate steps 1-3, making it efficient to find partners in the UK and access the right volume packaging partners internationally.
- Make sure the volume packaging house know where to point folks to in the UK.
- It will help to retain the high value design capability in the UK.

Key market gaps and failures in respect to advanced packaging

2. Advanced Heterogeneous Integration

- There are players, who can do the 5 micron alignment required for generation one integration but not the order of magnitude higher alignment capability needed for next generation.
- Market failure is in availability of next generation chip-to-chip level vertical hetero integration with submicron alignment and volume (2.5 or 3D).
- Clear differentiation needed from the Si:Si hetero integration that is the focus of the main Asian fabs seeking to increase yield in lowest node Si with chiplets from single vendor.

Risks:

- Without next generation CS 2.5D+hetero capability, UK will increasingly fall behind in its integration capability jeopardising their ability to capture value from CS fab investment in the future.
- UK would become beholden to the designers and owners of the integration process dictating choice of CS chips.
- And to capture most from CS investment, next generation hetero is crucial as chips are increasingly deployed in combinations.

Proposed Heterogeneous Packaging Facility

The proposed scope of the technical capability is focused on **2.5D and 3D heterogeneous integration of differing** materials (e.g. CS+Si, CS + CS, multi-vendor/-node Si). The offering is market agnostic and covers all application areas (RF, Optoelectronics, Power, Sensors and Digital electronics). Some of the packaged chip should be 'made-in-UK'. The facility should be funded by the UK government or PPI.

Auxiliary wafer processing and Deposition

The main requirement here is wafer processing, and in particular surface planarisation, wafer thinning and wafer bonding. In addition, there is a need for real deposition of barrier layers (e.g. by PECVD) and for metallisation (e.g. electroplating) for vias and interconnects.

Package/ System design and architecture The significance of package design and system architecture is the foundational step in optimizing the performance, reliability, protection, size, cost, and time to market of semiconductor devices and modules. The expertise required is multi-disciplinary. This is where the UK excels and has the potential to

lead in this domain.

Modelling UK can have strategic advantage in commercial package design capability from main vendors with multiphysics model capabilities to tackle electro-thermal and mechanical properties and reliability modelling of packaging.

Assembly Having an open access hetero package process capability is crucial to into future proof prototypes and system development, rapidly bringing these processes to the

modelling and assembly transforming concepts manufacturing. By colocating resources, UK can expedite device and industry. By investing in this capability, the UK can position itself as a global hub for package design and assembly

process development.

Metrology

The metrology capability of the facility needs to encompass packaging integrity, integrity of electrical interconnects (voltage and current), adhesion of insulating material, alignment of fine pitch, surface metrology. inline metrology, automated alignment.

Testing, Reliability & **Failure Analysis**

An integrated test and assembly facility has both on-wafer and postpacking testing (accelerated, reliability, harsh environmental testing, including thermal, mechanical, electromagnetic and radiation). Optoelectrical wafer level probe testing and leak testing of packaged devices are also important. There also need to be a suite of characterrisation tools like XRD. EDX and SEM.

WP3 - Compound open-access foundry capability

Business types and size of the UK operations of the organisations responding to the Infrastructure user survey (for WP3)

*Values represent number of organisations (based on 69 responses).

Revenue							
< £1.8 million	< £9 million	<£45 million	>£45 million				
23	7	11	19				

Location	Responses
East (England)	27
East Midlands (England)	3
London	7
North East (England)	8
North West (England)	5
Northern Ireland	4
Scotland	13
South East (England)	13
South West (England)	15
Wales	9
West Midlands	3
Yorkshire and The Humber	2

Compound open-access foundry capability – User Needs

Category	(Future Materials			
1	GaAs, GaSb, InGaAsP, InGaSb, InGa	P, InP, InSb, Other III:Antimoni	ides Ga	GaAs, GaSb, GaP, InGaAs, InP, InSb, Bismides, GaAs with quantum dot, InP with quantum		
		do	dot, Other III:Antomonides, Superlattices T2SL			
2	GaN, Cubic Gallium Nitride, SiN, Ale	iaN	Ga	N, GaN on Diamond, SiN, Com	posites of nitrides with other	functional materials
Others	Chalcogenide materials (3)		Ch	alcogenide materials (3)		
(3, 9, 11)	Thin film Lithium Niobate (9)		Th	in film Lithium Niobate (9)		
	Diamond (11)		Dia	amond (11)		
	Metamaterials		Me	etamaterials		
	Copper Indium Gallium Sulphide					
4	Doped Graphene					
5&8	Silicon Photonics, SiGe		Ge	, Ge on insulator		
6	CMT					
7	SiC, Cubic SiC		SiC	C, Si on insulator		
10	Ga2O3, AgO, BTO		Ga	2O3, Thin film BTO		
		Current Compound	Semiconductor Materials a	nd their Applications		
Category	Power	Photonics	RF/ Microwave	Digital electronics	Sensors	Total
1	1	23	8	2	7	41
2	9	7	10	1	3	30
3	1	3	0	2	1	7
4	1	1	1	0	1	4
5	0	1	3	0	0	4
6	0	1	0	0	1	2
/	10	1	0	1	1	13
10 Tetel	2	2	0	0	0	4
Iotai	20	39	22	0	14	110
		Future Compound	Semiconductor Materials a	nd their Applications		
Category	Power	Photonics	RF/ Microwave	Digital electronics	Sensors	Total
1	1	3	10	1	5	20
2	9	11	4	0	2	26
3	1	1	3	1	1	7
5	0	0	1	0	1	2
7	9	1	2	2	2	16
10	3	0	2	0	0	5
Total	23	16	22	4	11	76

Opportunity map for identified "commercial" material sets

		Forecast	Applications	Opportunity?
	GaAs	\$4.1b (2028)	Quantum, telecoms, health, defence	Emerging markets coupled with new material processes (PDKs) and new devices
SEGMENT 1 Arsenides etc	GaSb	\$14m (2028, substrate)	GaSb can be used in infrared detectors, infrared LEDs and lasers and transistors, and thermal photovoltaic systems.	TBC
	InP	\$6.4b (2028) ^[1]	Quantum, telecoms, health, defence	Emerging markets coupled with new material processes (PDKs) and new devices
SEGMENT 2	GaN	RF GaN \$2.7B (2028) Power GaN \$2.04b (2028)	Telecoms, defence, Evs	ТВС
Nitrides	AlGaN	ТВС	AlGaN finds applications in lasers, LEDs, UV detectors, and HEMTs.	ТВС
SEGMENT 3 SiC	SiC	\$9b (2028)	EVs, LV grid	Difficult to define, as large scale SiC fabs are being built overseas
SEGMENT 4 Oxides	IGZO	ТВС	Photonics, sensors, health, food, AI	Emerging markets coupled with new material processes (PDKs) and new devices Low volume fab facility already in UK
	Ga ₂ O ₃	\$6m (2028, substrate)	EVs, LV grid	New material, requires research to create PDKs and commercial chips

Note: SEGMENTS 1 and 2 have lots of applications SEGMENTS 3 and 4 have more specific applications

The fabrication flow for CS from innovation in small facilities to high volume production.

- The UK has recognised strengths in CS R&D but there is a gap in the subsequent route to commercialisation There is a need for a "bridge" to support the journey between developing CS devices to volume manufacture
- A single foundry cannot accommodate all compound semiconductor work
- Capability exists in the UK (not all open access) but the ecosystem is fragmented and investment is required
- Benefits of "bridging the gap"
 - Accelerate innovation towards volume production faster turnaround, ease of design iteration
 - Create a clear route to commercialisation for UK R&D no duplication of effort for volume
 - Attract inward investment to UK pilot line with partner in UK, volume fab capability overseas
 - Proximity to design & materials R&D
 - Protect UK sovereign interests

CS "R&D with service offering" capability matrix

	Design	Prototyping	Pilot, Industrial volume fab production	Process yield improvement
SEGMENT 1 Arsenides, etc	Cardiff, Glasgow Uni, Semiwise, Sheffield, CISM?	Cardiff, JWNC/ KNT, CISM?		SmartNano NI
SEGMENT 2 Nitrides	Cardiff, Glasgow Uni, Semiwise, Cambridge, Sheffield, CISM?	Cardiff, JWNC/ KNT, Cambridge, CISM?		
SEGMENT 3 SiC	CISM, Warwick, Glasgow Uni, Semiwise	CISM		
SEGMENT 4 Oxides	Bristol, Southampton Uni			

Where do these fit?

- Others
- Queens

- Observations
- UK activity in design and prototyping
- Lack of activity at scale-up

CS "commercial" capability matrix

	Prototyping	Pilot, , Industrial volume fab production	Process yield improvement	Consumer volume production
SEGMENT 1 Arsenides, etc	Cardiff, JWNC / KNT	Coherent, Sivers	Coherent, Seagate, Sivers	Coherent, Seagate, Sivers
SEGMENT 2 Nitrides	Cardiff, INEX, JWNC / KNT	INEX, Plessey	Plessey	Plessey
SEGMENT 3 SiC	Clas-SiC, Semefab, CISM	Clas-SiC, Semefab		
SEGMENT 4 Oxides	Pragmatic	Pragmatic		

Where do these fit?

- Royce
- Sheffield

Observations

- UK activity in prototyping and pilot line production
- Less activity at volume production

CS foundry options

Intervention options	R&D fab	Prototype fab	Industrial volume fab/pilot	Consumer volume production	Revenue model	Comments
1. Incentivise capital investments to support prototyping - £100m	Universities	Existing capability e.g Glasgow, Springtown, Cardiff, Swansea, Newton Aycliffe etc.	Overseas	Overseas	License design / IP	Captures more value in UK, "industry standards", Provides 'back-up' small volume fabrication for defence
2. Repurpose existing facilities to create open-access CS foundry or foundries, dependent on material - £250m UK alone or with international partner?	Universities	Enhanced existing capability, coordinated with national semi institute	Enhanced existing capability, coordinated with national semi institute	1 Overseas 2 UK CS foundry 3 Inward investment	IP and manufacturing	Captures more value in UK Provides sovereign capability

Observations:

- Increased funding captures more value in the UK
- CS foundry may be capable of volume production, maybe in multiple locations by material

WP4 - Design IP/tooling capability

Design IP/tooling capability – User Needs

Types of chip(s) designed / developed

(Values represent number of organisations)

Outsourcing and Challenges (43 respondents)

Total outsourcing activity per year	Total outsourcing activity per year abroad	Percentage of Design outsourced activity
£142 million	£124 million	25%

Top challenge					
Cost	 High costs of EDA tools restrict access to tools and processes and have an impact on the development and production time needed for new designs. These leads companies to outsource these activities and potentially miss commercial opportunities. There is an overall impact on companies' productivity and the number of designs that can be produced as well as the number of designers who can be employed by organisations 				

Government-sponsored Design Competence Centre

Companies supported	Design Flows offered	Support and Training	EDA Suppliers	Other Support
About 65 companies per year Estimated to be 40% of fabless start-ups and small SMEs	 Advanced CMOS Standard CMOS Optoelectronic Power electronic 2.5D/3D Hetero packaging 	 Design flow support by a centralized competence design centre Design services provided through the main EDA/IP vendors EDA/IP training Tape-out support 	 Cadence Synopsys Siemens Silvaco TCAD VPI Photonics, Luceda CST Microwave Studio 	 Offer hardware grants to smaller companies for prototyping Establish a unified & simple IP framework for NDAs, legal agreements and contracts Coordinate the consolidation of relevant open-source IP from universities through a national database Invest in open- source tool development and
				training

WP5 - Strategic coordination capability that would provide an institutional framework around the infrastructure components

- Understand what existing institutional frameworks could be used to integrate the activities proposed in work packages 1 to 4 into a coherent initiative supported by the UK government by:
 - 1. Identifying and review relevant organisations supporting semiconductor values chains and other sectors in the UK, EU, Japan, Taiwan, and the US to characterise their strategic approach, business models, and innovation and coordination functions.
 - 2. Providing lessons for the UK Semiconductor Infrastructure Initiative

Semiconductor Infrastructure Initiative - the Logic Model

Innuts	Activities		Outpute	Outcomos	Impact			
Inputs	Operational	Strategic	Outputs	Outcomes				
Context The UK National Semiconductor Strategy was launched in May 2023 aiming to: • Grow the domestic sector • Mitigate the risk of supply chain disruptions • Protect UK national security	Silicon manufacturing Establish and operate a <i>new physical</i> <i>facility</i> in the UK to: 1) enable the development of additional processing of CMOS wafers in the UK; 2) Negotiate guaranteed access to all process node sizes from overseas foundries	 Represent the UK semiconductor industry Coordinate opportunities across the UK semiconductor sector 	Improved access	 Contribute to the National Semiconductor Strategy's vision of securing areas of world leading strength in the semiconductor 				
Objectives Set up a UK National Semiconductor Institute to support commercial R&D and SME growth through the development of the UK's enabling infrastructure	Advanced packaging Establish and operate a new physical facility focused on 2.5D and 3D heterogeneous integration of differing materials (e.g. Compound semiconductors and Silicon chips, multivendor Silicon-Silicon chips and Compound semiconductor- Compound semiconductors chips).	 Devise roadmaps for the UK semiconductor sector Grant awarding (i.e. equipment; development and training of open- source EDA tools) Coordinate the consolidation of relevant open-source IP into a national database for UK firms Collaborate with UK educational institutions to establish relevant programs for skill development 	to strategic technologies and services for UK firms, particularly for SMEs • Increased applied R&D	 technologies Maintain and build on the UK's leading edge in chip design and IP Upgraded resilience 	Growth of the UK			
 Inputs Set-up phase: initial government investment of £200 million over the years 2023-25 Ongoing phase: Project revenue from 	 Compound open-access foundry Co-ordinate the current research and piloting activities and infrastructure; Procure pilot capability from existing facilities for compound semiconductors; Procure and locate new/enhanced pilot capability when it is not currently available for compound semiconductors 		 Coordinate the consolidation of relevant open-source IP into a national database for UK firms Collaborate with UK educational institutions to establish relevant 	 Coordinate the consolidation of relevant open-source IP into a national database for UK firms Collaborate with UK educational institutions to establish relevant 	 Coordinate the consolidation of relevant open-source IP into a national database for UK firms Collaborate with UK educational institutions to establish relevant 	 Support to Start- ups scale up 	 of the UK supply chains Product and process improvement Business 	supply sector nd ent
industrial projects, including Licence design, IP, and manufacturing activities	Design IP/tooling Establish and coordinate a design centre (either virtual or physical) to help start-ups and SMEs on several aspects of the design for the company and support companies with EDA tools and IP licenses			 Performance improvements Knowledge accumulation and spillover effects 				
 Skills shortage and lack of experienced semiconductor engineers Misalignment between end-user requirements and manufacturing capabilities 								

- Access to skilled suppliers and laborate
 - IP-related constraints to access and use the required design tools and IP blocks

Review of selected organisations

The activities that could fall within the scope of the proposed UK National Semiconductor Institute are not usually conducted within a single organisation

Two typologies of organisations have been identified:

- 1) Research and Technology Organisations (RTOs), relying on hard infrastructure and facilities, whose primary mission is to provide key innovation services and infrastructure for enterprises.
- 2) Innovation coordination organisations, relying on light infrastructure, whose primary mission is to design longterm sectoral strategies, identify industry needs and technological priorities, provide R&D grants to other organisations, represent sector interest at national and international level, and develop support workforce development for the sector as a whole.

Review of selected organisations

The activities that could fall within the scope of the proposed UK National Semiconductor Institute are not usually conducted within a single organisation

List of UK and international organisations reviewed

	Research and Technology Organisations (RTOs) Mission 1: provision of key innovation services and infrastructure for enterprises		Innovation coordination organisations Mission 2: sector long-term strategy development
• • • • • • • • • • • • • • • • • • • •	Interuniversity Microelectronics Centre – imec (Belgium) CEA-Leti (France) Tyndall National Institute (Ireland) Fraunhofer Group for Microelectronics (Germany) Leading-edge Semiconductor Technology Center – LSTC (Japan) Industrial Technology Research Institute – ITRI (Taiwan) Taiwan Semiconductor Research Institute – TSRI (Taiwan) National Semiconductor Technology Center – NSTC (USA)	•	Semiconductor Research Corporation – SRC (USA) Aerospace Technology Institute - ATI (UK) Advanced Propulsion Centre – APC (UK)

Key findings from the international review: RTOs

- Reviewed institutions are heavily focused on addressing the innovation needs of firms operating both in their host country and from abroad
- Funding portfolios combine core government funding with other income streams such as grants and private sector contracts
- Reviewed institutions tend to be independent and not-for-profit organisations
- European institutions such as Tyndall, Imec, CEA-Leti and Fraunhofer are informally part of a European distributed model (i.e. they complement each others functions – for example firm access to facilities, EU semiconductor strategy, access to equipment)
- Reviewed institutions drive change across three main innovation functions: 1) knowledge generation and import; 2) knowledge mediation and diffusion; 3) knowledge supply and absorption
- The reviewed innovation centres tend to be organised in either centralised or distributed institutional framework models

Institutional framework options observed in international RTOs

- 1. Fully centralised model, where the following activities are concentrated in a single location: planning activities; decision making; business functions/departments; and physical R&D facilities and equipment
 - For example Tyndall National Institute
- 2. Fully distributed, empowering geographically dispersed sub-centres or departments to make decisions, promoting communication in all directions.
 - For example *Fraunhofer Microelectronics Group* with a contact and coordination office in Berlin and 13 financially independent centres
- 3. Semi-distributed: an organisational set-up in which a critical mass of facilities and functions are concentrated in a single hub that includes the organisational headquarter, while some additional facilities are distributed geographically
 - For example *imec* with a headquarter and main facilities hub located in Leuven (Belgium) plus additional distributed R&D groups and offices in foreign countries

Overall barriers where government intervention maybe required

- Skills shortage and lack of **experienced** semiconductor **engineers** available. The UK is not attractive to international talent as it offers low salaries and it has a high cost of living.
- Standardisation of the design of electronic chip devices which make it difficult to package them especially if chips are provided by different vendors.
- IP issues for accessing and using the required design tools and IP blocks. Barriers
 for transferring knowledge and between universities and companies. Lengthy and complicated
 negotiations with foundries.
- Insufficient allocation of resources/ investment especially for scaling-up and manufacturing on a large scale.
- Misalignment between end-user requirements and manufacturing capabilities.
- Lack of an ecosystem and access to facilities. There are few skilled suppliers and access to existing laboratories is difficult.

Question

Questions