

REPORT

on the

Roadmapping Workshop for the EPSRC Centre for Innovative Manufacturing in Ultra Precision

Reel-to-Reel Platform

The Workshop was sponsored by EPSRC

15 May 2014

Report drafted by Dr Nicky Athanassopoulou at IfM ECS

1. Executive Summary

The EPSRC Centre for Innovative Manufacturing in Ultra Precision organised a roadmapping workshop for the Reel-to-Reel (R2R) technology platform with input from nine participants from industry and academia in the UK. Its aim is to:

- Identify key industrial drivers and needs
- Identify which applications are emerging in ultra precision engineering that would benefit from the technological advancements made in the R2R platform.
- Explore the best applications, their value for UK businesses and the best route for their commercialisation.
- Develop a preliminary business plan for the selected applications.

This workshop followed on from a previous workshop that took place in October 2011 for the whole EPSRC Centre in Innovative Manufacturing in Ultra Precision and explored in more detail the R2R platform. The workshop took place on 15 May 2014 at Cranfield University.

The key market and industry drivers identified were the following:

- 1. **Reducing manufacturing and operating product costs**. Industry needs to respond to continuous pressure for reducing manufacturing costs for both components and overall systems, and reducing the operating costs for products.
- Increasing range of consumer electronic devices. There is an on-going demand for increasing the range and functionality of consumer electronic products and their subcomponents.
- 3. **Increasing speed of manufacturing**. There is pressure to increase the speed of manufacturing, enable rapid volume scale up and have a faster turn-around of products.
- 4. **Renewable energy generation and storage**. There is a global driver for increasing the generation and storage of renewable energy.

The **priority future applications** identified were predominantly around the development of technology for machine control applicable to a variety of products and industries. These were:

- 1. **Registration** information on 3 axis (x, y, z) better than or equal to 1 μm to enable the development of multi layer functional devices, e.g. TFT for logic or smart packaging on thin glass, plastic or paper.
- 2. **R2R handling** of thin glass and plastics including tension and precision position for single web. Lamination is included. This can facilitate the development of multiple printed and aligned layers e.g. OLED/lighting or photovoltaics as well as printed and/or flexible circuit boards and large scale, programmable displays.
- 3. **Small format R2R** flexible tool to facilitate development of R2R processes and products. The tool can be used for small sheet/width roll in a flow process to enable the transfer of processes and products from lab to volume by offering a pre-production capability.

After exploring these applications in detail, applications 1 and 2 were considered to be addressing similar issues and were summarised together.

The most important **R&D priorities** to deliver these applications were:

- 1. Modelling of materials and processes
- 2. Fiducial design especially in 3D
- 3. Incorporating in-process metrology
- 4. Demonstrate 1 µm control
- 5. Designing friction free spindles
- 6. Control system
- 7. Sensors and measurements
- 8. Substrate development
- 9. Spray coat precision
- 10. Vacuum gate technology

Contents

1.	Executive Summary	2
2.	Methodology	4
3.	Background and Previous Work	5
4.	R2R Roadmap Summary	
5.	Market and Industry Drivers	7
6.	Prioritisation of the Future Applications	9
7.	Exploration of the Three Future Applications	. 13
8.	R&D priorities	
9.	Knowledge Gaps and Enablers	. 18
10.	Conclusions	. 19
11.	Appendix 1 – Participants List	. 20
12.	Appendix 2 – Participant Feedback	20
13.	Appendix 3 – Workshop agenda	. 21
14.	Appendix 4 – List of all Drivers and Industry Needs	21
15.	Appendix 5 – Electronic transcription of Workshop Outputs	22

List of Figures

Figure 1 – Original Roadmap for the EPSRC Centre in Ultra Precision (Oct 2011)	5
Figure 2 – Original exploration of R2R technology platform for the EPSRC Centre in Ultra Prec	
(Oct 2011)	6
Figure 3 – Roadmap for the ultra precision R2R platform.	7
Figure 4a - Total votes received for all the Opportunity factors.	10
Figure 5a -Top three Opportunity factors selected and used in the workshop	10
Figure 6 – Application prioritisation chart using Feasibility-Opportunity axis	12
Figure 7 – Roadmap showing the prioritised Market and Industry Drivers, Future Applications a	and
key Technical Capabilities for the ultra precision R2R platform	13
Figure 8 - Roadmap for the Registration application.	15
Figure 9 – Roadmap for the R2R handling of thin glass and plastics application	15
Figure 10 – Mini-business plan for the Registration and R2R handling thin glass and plastic	
applications	16
Figure 11 – Roadmap for the small format R2R application	16
Figure 12 – Mini-business plan for the small format R2R application	

List of Tables

Table 1 – Prioritised market and industry drivers for the ultra precision R2R platform	8
Table 2 – Opportunity factors used to assess the various future applications	9
Table 3 – Feasibility factors used to assess the various future applications.	9
Table 4. Shortlisted applications including the Feasibility and Opportunity votes received for eacl	h.11
Table 5 – List of attendees participating in the exploration of the three selected applications	14
Table 6 – Links of the most important market drivers and needs to the three selected future	
applications	14
Table 7 – Link of R&D priorities to the three future applications	18
Table 8 – Knowledge gaps and enablers for the ultra precision in R2R platform	18

2. Methodology

The methodology used to develop the roadmap consisted of three parts: a **Design and Pre-work** part, the **Workshop** and the **Analysis and Client Report**.

1. The **Design and Pre-work** consisted of the following activities:

(a) confirmed with the workshop sponsors the key aims and desired outputs from the workshop;

(b) designed the appropriate roadmap architecture and group templates;

(c) Designed suitable pre-work templates that resembled the roadmap architecture to collect input from the participants. These were sent to 12 people from both industry and academia in advance of the workshop to collect their input on the future applications they considered the most important. Six people contributed content for the roadmap in advance of the workshop and independently of others; all participants contributed additional content during the workshop;

(d) Circulated to the participants in advance of the workshop pre-defined lists of Opportunity and Feasibility criteria that could be used to assess each future application. Each person was asked to independently select (vote on) the criteria they considered key for assessing each application. All votes were collected and consolidated. The criteria that received the most votes were used during the workshop to prioritise the various applications;

(e) received and clustered all input;

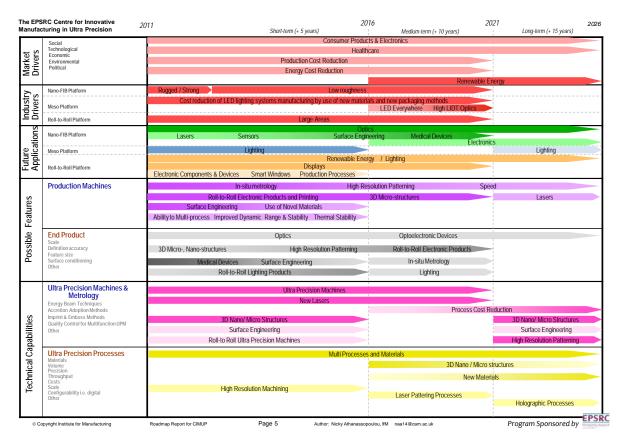
(f) designed the workshop process and required collateral material for the workshop (facilitation slides, participant handouts etc).

2. The one-day **Workshop** brought together 9 participants from industry and academia. The workshop aims were to:

- (a) present each participant's input on the future applications in ultra precision for R2R;
- (b) prioritise the applications using the pre-defined selection criteria;
- (c) select the most suitable manufacturing applications to explore further;
- (d) explore the shortlist of manufacturing applications in groups and determine the desired technology development plans and collaboration opportunities and identify the most important R&D priorities;
- (e) determine the common research themes emerging from the shortlisted laser-based manufacturing applications.

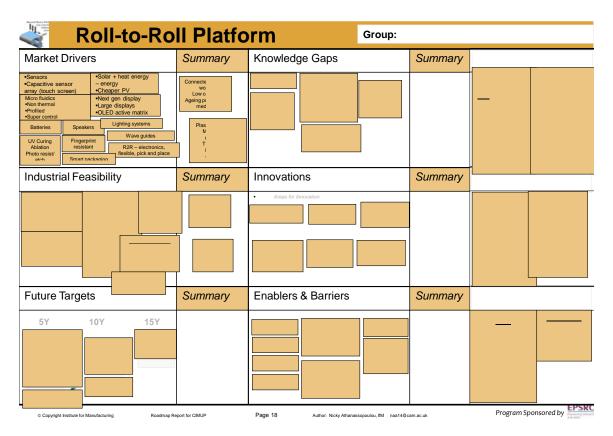
3. The final part consisted of the transcription of all output from the workshop into an electronic format, content analysis and the drafting of the **Client Report**.

The report can be used by the workshop sponsors for setting research priorities and, if appropriate, communicating these with academic, industrial or public sector stakeholders.



3. Background and Previous Work

The EPSRC Centre for Innovative Manufacturing in Ultra Precision undertakes early stage production research to establish new processing technologies needed for the effective production of emerging products, with global outreach. The Centre was established in 2011 and in October 2011 it conducted a workshop to roadmap the market and industry drivers and future applications in ultra precision.


The Centre conducts research in three technology platforms; Nano-FIB, Meso and R2R. The initial workshop mapped all three platforms in parallel, reviewed key trends and drivers and identified future applications, which could result in novel Production Machines and Products and enabling technologies to support these.

The original roadmap developed for the Centre is shown below:

Figure 1 – Original Roadmap for the EPSRC Centre in Ultra Precision (Oct 2011).

The three technology platforms were also explored in more detail during that workshop to establish required targets, technology developments and knowledge gaps, enablers and drivers. The summary plan derived for the R2R platform is shown below.

Figure 2 – Original exploration of R2R technology platform for the EPSRC Centre in Ultra Precision (Oct 2011).

Considerable technological development has taken place since then. The Centre now wants to develop innovation roadmaps for each of its technology platforms. The first one organised was for the R2R platform.

4. R2R Roadmap Summary

The roadmap covers three time periods: the short term (+2 years i.e. up to 2016), the medium term (+5 years i.e. up to 2019) and the long term (+7 years i.e. up to 2021). Nine people in total from both industry and academia contributed with content for its creation.

The roadmap includes three broad layers; (1) Market and Industry Drivers, (2) Future Application and (3) Technical Capabilities. The **Market and Industry Drivers** were further subdivided into the following layers:

1a. Macroeconomic drivers such as Social, Technological, Economic, Environmental and Political;

1b. Industry Drivers;

1c. Other.

In total, 20 market and industry drivers were identified. These were distributed mainly in the short and medium term. Most were relating to industry drivers.

The Future Applications were also subdivided into the following layers:

- 2a. Development of Technology for Machine Control;
- 2b. Platform Testing of New Processes;
- 2c. Machine and System Design Consultancy and/or Analysis;

7

2d. Event provision and Ultra Precision Community Collaboration;

- 2e. Industrial Training;
- 2f. Other

In total, 41 future applications were identified. Approximately 90% of those were in the short and medium term. The applications were well distributed between the different layers.

The Technical Capabilities were subdivided into the following layers:

- 3a. Ultra Precision Machines and Metrology
- 3b. Ultra Precision Processes

In total, 21 technical capabilities were identified during the workshop. These were well distributed from the short to the long term and between the two sub-layers.

A schematic of the roadmap is shown below.

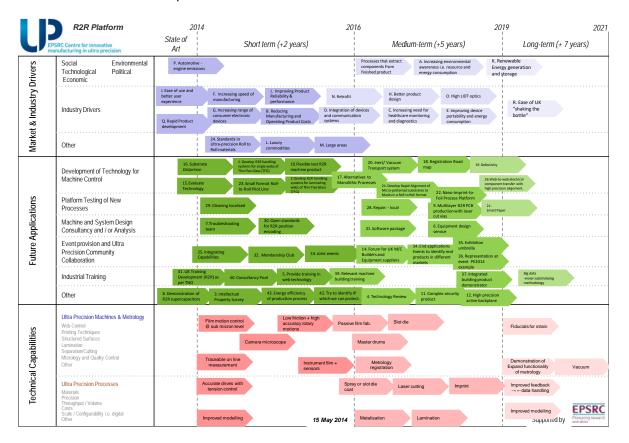


Figure 3 – Roadmap for the ultra precision R2R platform.

5. Market and Industry Drivers

The list of Market and Industry drivers developed in the original workshop was collected and used as input for the R2R platform. The participants were given the original list and asked during the exploration of the three priority applications (group work) to assess which ones were relevant for the particular application under consideration. The prioritised list of drivers that emerged is shown in the table below. Four new industry drivers were added to the original list, namely: U.) *Ease of UK "shaking the bottle"*, V.) *Rapid Product Development*, S.) *Standards in Ultra-Precision R2R Materials* and T.) *Processes that Extract Components from a Finished Product*. The full list of drivers is shown in Appendix 4.

	Driver	Description	Ranking
В	Reducing manufacturing and operating product costs	Pressure for reducing manufacturing costs for both components and overall systems, and reducing the operating costs for products	3
G	Increasing range of consumer electronic devices	Increasing range and functionality of consumer electronic products and their sub-components	3
F	Increasing speed of manufacturing	Increasing speed of manufacturing, rapid volume scale up and faster turn-around of products	2
к	Renewable energy generation and storage	Increase the generation and storage of renewable energy	2
A	Increasing environmental awareness i.e. resource and energy consumption	Designing and producing eco-friendly products, systems and services; promoting low carbon energy production and transport; incorporating renewable energy production; reducing resource utilisation	1
С	Increasing need for healthcare monitoring and diagnostics	Introducing new or improved methods for point- of-care diagnostics and health monitoring; reducing healthcare costs; increasing the speed of healthcare monitoring and diagnostic methods	1
D	Integration of devices and communication systems	Information exchange between different devices aided by the internet; better integration of communication systems and a better connected mobile world	1
н	Better product design	Better product designs; design freedom; improved size, weight and cost	1
L	Luxury commodities	Increase of demand for luxury commodities	1
М	Low roughness	Requirement for low roughness of specific surfaces	1
R	Ease of UK "shaking the bottle"		1
Q	Rapid product development		1

Table 1 – Prioritised market and industry drivers for the ultra precision R2R platform.

The top four market and industry drivers were:

- 1. **B. Reducing manufacturing and operating product costs**. Industry needs to respond to continuous pressure for reducing manufacturing costs for both components and overall systems, and for reducing the operating costs for products.
- 2. **G. Increasing range of consumer electronic devices.** There is an ongoing demand for increasing the range and functionality of consumer electronic products and their sub-components.
- 3. **F. Increasing speed of manufacturing**. There is pressure to increase the speed of manufacturing, enable rapid volume scale up and have a faster turn-around of products.
- 4. **K. Renewable energy generation and storage**. There is a global driver for increasing the generation and storage of renewable energy.

This is consistent with the market and industry drivers identified originally: Production Cost Reduction, Energy Cost Reduction, Renewable Energy and Consumer Products & Electronics.

6. Prioritisation of the Future Applications

Each of the 41 applications put forward during the workshop was assessed using two different and broadly separate considerations: Opportunity and Feasibility. Opportunity was defined as the magnitude of the opportunity plausibly available to an organisation. Feasibility was defined as how well-prepared the organisation is to grasp the opportunity.

For both Opportunity and Feasibility, a list of factors was provided to all participants in advance of the workshop. Each participant independently selected the ones he/she considered to be the most appropriate for assessing the applications. The factors are shown in the green and yellow tables below.

DIMENSION	FACTOR	DEFINITION	
	Market size	Size of potential market, or number of potential adoptions, reasonably available to us.	
Ш	Our sales potential in a given time	Sales volume or number of adoptions anticipated in a defined time (say, 5 years)	
VOLUME	Synergy opportunities	Possible additional benefits to other projects or activities; or the possibility of new opportunities in combination.	
	Customer benefit	Identifiable benefit to customers (internal or external) or potential adopters	
	Competitive intensity in Market	Number or significance of the competition	
_	Increased margin, or benefit per unit	Improvement in product margin (eg by cost reduction or price premium, compared to existing products; or benefit to us per adoption	
MARGIN	Business cost reduction or simplification	Facilitates cost reduction or simplification of business processes	
2	Industry/market readiness	How easy will it be for customers or adopters to take up the product; do they have to change their behaviour or processes?	
PLATFOR M FOR FUTURE BENEFIT	Market growth	Anticipated growth rate of market	
PLAT M F FUTI BENI	Future potential	Product is a platform for future products or could open new markets in future	
INTANGIBLES	Learning potential	Will improve the knowledge or competence of the business	
ANGI	Impact on Brand Image	Effect on B rand image or staff morale	
INT	Impact on key customer relations	Importance for relations with key customers	

Table 2 – Opportunity factors used to assess the various future applications.

DIMENSION	FACTOR	DEFINITION
н	Product differentiation	How well the product is differentiated from those of major competitors
CHARACTERISTICS OF THE PRODUCT	Sustainability of competitive advantage	Our ability to sustain our competitive position (eg IPR, Brand strength etc)
RACTE	Technical challenge	How confident are we that the proposed product is technically feasible?
CHAF	Market knowledge	Our understanding of size and requirements of the market
CAPABILITY	Technical capability	Do we have the required technical competence to design the product?
(5	Fit to sales and/or distribution	Fit to our sales competences and/or distribution chain
SUPPORTING BUSINESS PROCESSES	Fit to manufacturing and/or supply chain	Ability to manufacture or supply the product
SUP BUS PRO	Finance	Availability of finance for the project
ANIS VAL CING	Strategic fit	How well does the proposal fit our company strategy?
ORGANIS ATIONAL BACKING	Organisational backing	Level of staff or management backing at an appropriate level

Table 3 – Feasibility factors used to assess the various future applications.

All the votes received were consolidated in advance of the workshop. The total number of votes received for each factor is shown in the figures below.

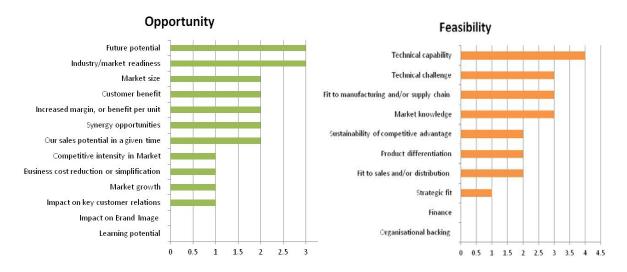
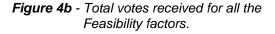



Figure 4a - Total votes received for all the Opportunity factors.

The factors that received most votes for both Opportunity and Feasibility are shown in the figures below. These were used during the workshop to assess and prioritise all applications.

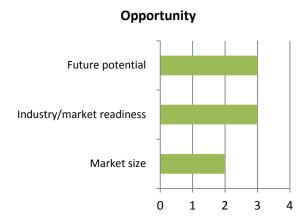


Figure 5a - Top three Opportunity factors selected and used in the workshop.

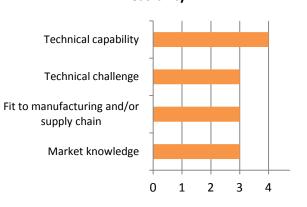


Figure 5b - Top four Feasibility factors selected and used in the workshop.

The assessment process had two parts. Firstly, each participant was asked to review the 41 applications and independently select four to eight of them, based on the three Opportunity factors. Participants were discouraged to vote for the applications they had contributed unless they were part of bigger group or cluster.

In the second step, participants were asked to consider only applications that had already been selected using the opportunity factors. Each participant was then asked to independently select four to eight applications of these based on the four Feasibility factors.

A shorter list of 20 applications was thus derived and considered further during the workshop. This shorter list contained mainly applications for the **Development of Technology for Machine**

Feasibility

11

Application	Feasibility	Opportunity
26. Web-to-web electrical component transfer with high precision alignment	7	3
23. Small Format R2R Pilot Line	6	6
18. Registration Roadmap	6	5
16. Substrate Distortion	5	3
40. Consultancy Pool	4	5
20. Inert/ Vacuum Transport system	4	4
8. Demonstration of R2R supercapacitors	3	3
13. Collate Specification of Roll2Roll process requirements	3	3
19. Defectivity	3	3
41. UK Training Development (R2R) as per TNO	3	2
5. Provide training in web technology	3	1
10. Flexible test R2R machine product	3	3
21. Develop Rapid Alignment of Micro-patterned substrates to Masks in a Roll to Roll format	2	6
32. Membership Club	2	2
6. Equipment design service	2	4
9. Multilayer R2R PCB production with laser cut vias	2	2
17. Alternatives to Monolithic Processes	2	1
2. Develop R2R handling systems for laminating webs of Thin Flex Glass (TFG)	2	2
1. Develop R2R handling systems for single webs of Thin Flex Glass (TFG)	2	2
22. Nano-Imprint-to-Foil Process Platform	1	4

Control or for the **Platform Testing of New Processes** layers of the roadmap. The shortlist of applications is shown in the Table below.

Table 4. Shortlisted applications including the Feasibility and Opportunity votes received for each.

The shortlist was transferred onto a 2x2 matrix with Opportunity shown on the vertical axis and Feasibility on the horizontal axis (see figure below). This was to facilitate decision making and the selection of the most appropriate applications to explore during the workshop. Applications placed on the top right quadrant (High Feasibility and High Opportunity) were of immediate interest. Applications on the top left quadrant (Low Feasibility / High Opportunity) may represent possible long-term opportunities. Applications placed on the bottom quadrants (Low / High Feasibility and Low Opportunity) are not automatically dismissed as they might enable other applications or support longer-term prospects.

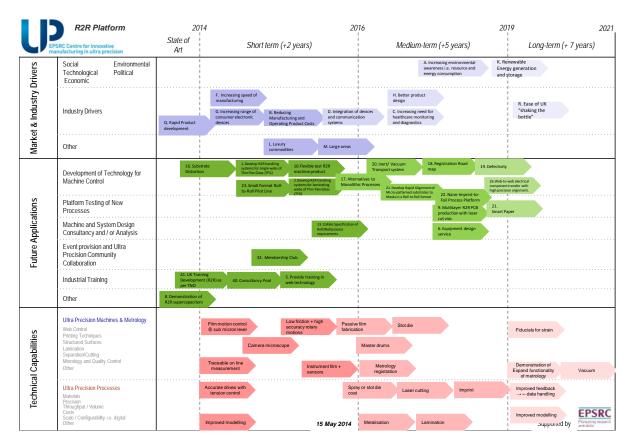


Figure 6 – Application prioritisation chart using Feasibility-Opportunity axis.

All participants were involved in choosing which of the applications were most appropriate to take forward. Some applications were synergistic and were grouped together. These were:

- 1. Develop R2R handling systems for single webs of Thin Flex Glass (TFG) and 2. Develop R2R handling systems for laminating webs of Thin Flex Glass (TFG)
- 10. Flexible test R2R machine product and 23. Small Format Roll-to-Roll Pilot Line

Three applications were selected using a consensus-based process that took into consideration the following aspects to achieve a balanced selection:


- relative scores of each application and their position onto the 2x2 chart
- the timeline of the application (short, medium or long-term)
- the specific expertise of the workshop participants

The following three applications were selected for further exploration:

- 1. **R2R handling** of thin glass and plastics including tension and precision position for single web. Lamination is included. This can facilitate the development of multiple printed and aligned layers e.g. OLED/lighting or photovoltaics as well as printed and/or flexible circuit boards and large scale, programmable displays. (Applications 1& 2)
- Registration information on 3 axis (x, y, z) better than or equal to 1 μm to enable the development of multi layer functional devices, e.g. TFT for logic or smart packaging on thin glass, plastic or paper. (Application 18)
- Small format R2R flexible tool to facilitate development of R2R processes and products. The tool can be used for small sheet/width roll in a flow process to enable the transfer of processes and products from lab to volume by offering a pre-production capability. (Applications 10 & 23)

IfM Education and Consultancy Services Limited. Registration No: 3486934. Registered in England. The Old Schools, Trinity Lane, Cambridge, CB2 1TN

A summary roadmap for the ultra precision R2R platform indicating priority Market and Industry Drivers, Future Applications and Technical capabilities is shown below.

Figure 7 – Roadmap showing the prioritised Market and Industry Drivers, Future Applications and key Technical Capabilities for the ultra precision R2R platform.

7. Exploration of the Three Future Applications

Each application was explored in four steps. Initially, the scope and boundaries of the application were considered as well its long-term goal and vision. Then its links to the market drivers and needs were discussed. The technical feasibility was subsequently explored in detail especially in terms of the required machines, metrology and processes, any success factors and knowledge gaps and the milestones that need to be put in place to realise the final vision. Finally, the key R&D priorities were summarised.

The participants were split into four groups, each exploring one application. The following people participated in each group:

Registration	R2R Handling thin glass and plastics	Small format R2R
Liam Blunt	Dilwyn Jones	Neil Davies
John Lampett	Paul Shore	Cliff Joilliffe
Paul Streatfield	Nick Walker	Martin O'Hara

Table 5 – List of attendees participating in the exploration of the three selected applications.

Each of these applications can potentially address many different markets from instrumentation to healthcare, flexible electronics and sensors.

Collectively, the three applications can cover all the top four market and industry drivers and adequately address the rest. The links of the three applications to the market and industry drivers are shown below.

			Registration	R2R Handling thin glass and plastics	Small format R2R
	В	Reducing Manufacturing and Operating Product Costs			
	G	Increasing range of consumer electronic devices			
	F	Increasing speed of manufacturing			
	К	Renewable Energy generation and storage			
	А	Increasing environmental awareness i.e. resource and energy consumption			
DS	С	Increasing need for healthcare monitoring and diagnostics			
NEE	D	Integration of devices and communication systems			
STRY	Н	Better product design			
INDU	L	Luxury commodities			
DRIVERS AND INDUSTRY NEEDS	М	Large areas			
VERS	R	Ease of UK "shaking the bottle"			
DRI	Q	Rapid Product development			

Table 6 – Links of the most important market drivers and needs to the three selected future applications.

The high-level roadmaps and summary mini-business cases derived for each of the applications are shown below. These include a more detailed specification for the application defining the boundaries, the long-term vision, the desired future performance characteristics, the milestones necessary to achieve the vision, specific technical capabilities for each milestone and desired research priorities.

The Registration and R2R handling thin glass and plastic shared the same business case as it became clear that they are fundamentally very similar.

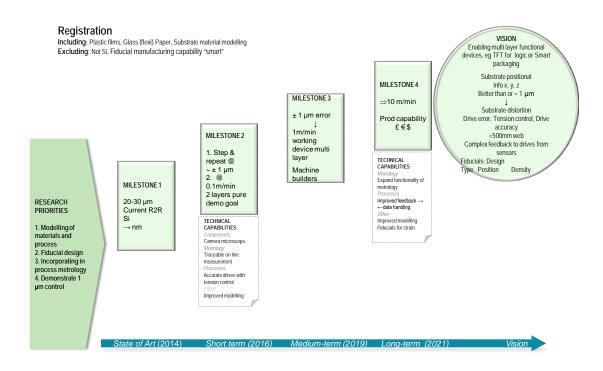


Figure 8 - Roadmap for the Registration application.

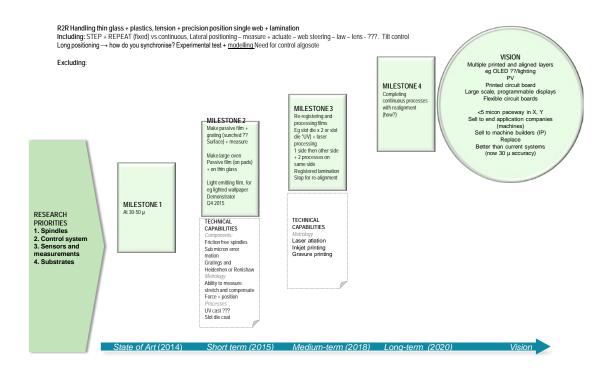


Figure 9 – Roadmap for the R2R handling of thin glass and plastics application.

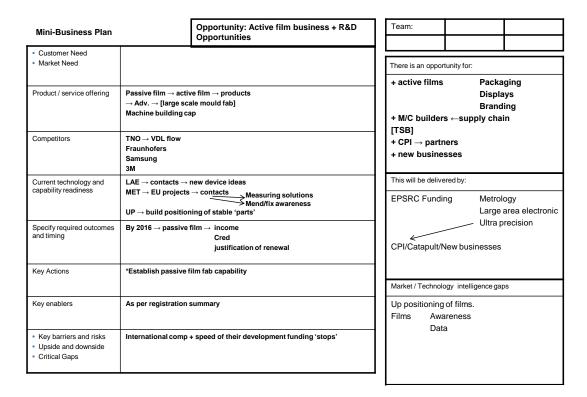


Figure 10 – Mini-business plan for the Registration and R2R handling thin glass and plastic applications.

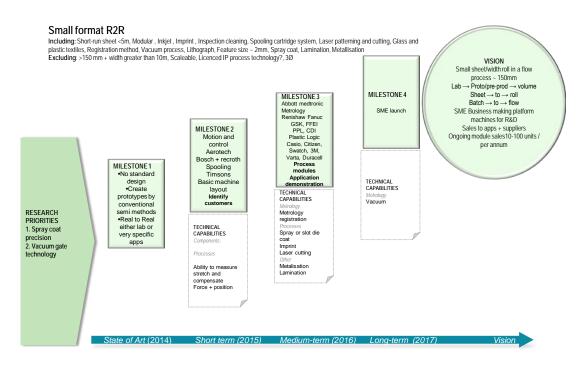


Figure 11 – Roadmap for the small format R2R application.

Mini-Business Plan		Opportunity: Small format R2R		Team:	Neil Davies	Cliff Joliffe
					Martin O'Hara	
Customer Need Small scale flexible tool to facilitate development of R2R processes and products Mid step from lab scale to volume (ie prototype/pre production) Prove of sheet-to-roll and batch-to-flow		There is an opportunity for: Instrumentation, plastic electronics + machine builders				
Product / service offering	Modular roll process Low consumable co	sing machine st (low volume processes)		Small volume applications to realise cost benefits New business creation without high production costs		
Competitors	Sheet based lab & c	ustom built roll processing (all 'one-off')		p.cauc		
Current technology and capability readiness Use current state-of-art roll-to-roll machine capabilities Process modules can be adapted from existing 3rd parties			This will be delivered by:			
Specify required outcomes and timing Identify potential customer + market size within 12 months Have operating spool-to-spool within 12 months Identify demonstrator + fabricate by 24 months Determine vacuum feasibility by 24 months SME launch 36 months				→ technology aper/label equipm rers	ent	
Key Actions	Build business case Identify funding sou			Market / Tech	nology intelligence ga	IDS
Key enablers TSB or Horizon 2020 fundin Industrial sponsor) funding		Market size + understanding (is UK big enough?) Suitability of vacuum processes		g (is UK big
 Key barriers and risks Upside and downside Critical Gaps 	Wider industry not interested (lab → vol) Has it already been done overseas? Could lessen move to large scale volume Lowers barrier of entry for other companies Vacuum processes + feasibility in-line? Has it already been done overseas?		erseas?			

Figure 12 – Mini-business plan for the small format R2R application.

8. R&D priorities

The following R&D activities were considered most important by the participants in delivering the selected applications:

- 1. Modelling of materials and processes
- 2. Fiducial design especially in 3D
- 3. Incorporating in-process metrology
- 4. Demonstrate 1 µm control
- 5. Designing friction free spindles
- 6. Control system
- 7. Sensors and measurements
- 8. Substrate development
- 9. Spray coat precision
- 10. Vacuum gate technology

			Registration	R2R Handling thin glass and plastics	Small format R2R
	1	Modelling of materials and processes			
	2	Fiducial design especially in 3D			
	3	Incorporating in-process metrology			
ties	4	Demonstrate 1 µm control			
riorit	5	Designing friction free spindles			
R&D Priorities	6	Control system			
ß	7	Sensors and measurements			
	8	Substrate development			
	9	Spray coat precision			
	10	Vacuum gate technology			

Table 7 – Link of R&D priorities to the three future applications.

9. Knowledge Gaps and Enablers

All of the knowledge gaps identified were technical and related to specific processes, metrology or material understanding.

The enablers were predominantly centred around economic support or incentives, such as funding through national or European projects, or commercial, such as understanding specific markets, targeting large enough markets or accessing industrial partners to transfer technologies and knowhow.

The table below summarises the knowledge gaps and potential enablers identified.

Knowledge Gaps

- Process effects
- Accurate tension measurement
- Understanding and modelling of processes and substrates
- Substrate variability
- Specifications
- Vacuum processing

Enablers

- Market understanding
- Market size
- TSB and H2020 Project
- Good OK SME base in plastic electronics
- Paper and label business looking to diversify

Table 8 – Knowledge gaps and enablers for the ultra precision in R2R platform.

10. Conclusions

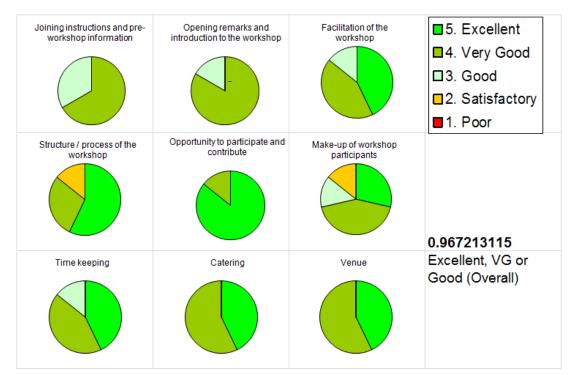
A roadmapping workshop organised and sponsored by the EPSRC Centre in Innovative manufacturing in ultra precision for the R2R platform in May 2014. The Centre aims to create ultra high precision manufacturing processes and tools that can make products with nanoscale precision. Furthermore, it aims to be a knowledge 'hub' and link academia with UK industry and other leading international organisations.

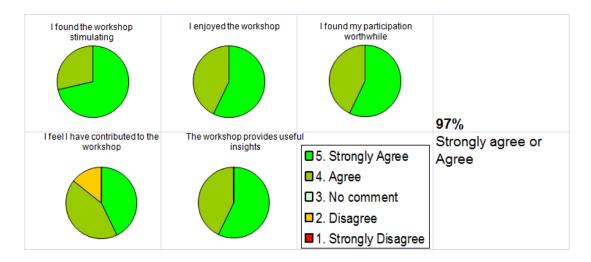
The workshop brought together 9 participants from industry and academia in the UK to understand the market and industry needs, prioritise relevant applications and assist in developing appropriate R&D priorities for the UK for the R2R platform.

Three future applications were selected as priorities due to their potentially widespread impact on a range of different markets and their relevance to the Centre's key objectives. These were:

- 1. Registration information on 3 axis (x, y, z) better than or equal to 1 µm
- 2. R2R handling of thin glass and plastics
- 3. Small format R2R flexible tool to facilitate development of R2R processes and products.

The key R&D activities necessary for delivering these applications were:


- 1. Modelling of materials and processes
- 2. Fiducial design especially in 3D
- 3. Incorporating in-process metrology
- 4. Demonstrate 1 µm control
- 5. Designing friction free spindles
- 6. Control system
- 7. Sensors and measurements
- 8. Substrate development
- 9. Spray coat precision
- 10. Vacuum gate technology


11. Appendix 1 – Participants List

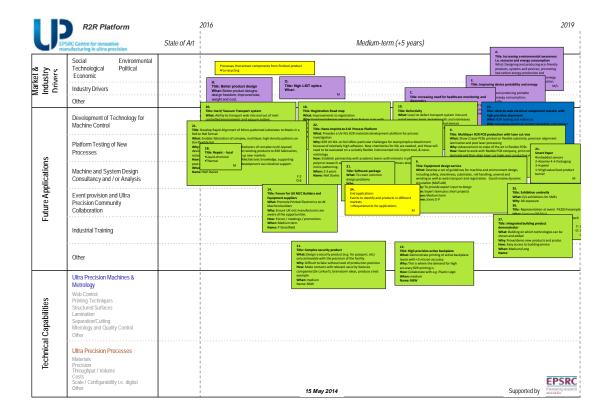
NAME	ORGANISATION
Liam Blunt	Huddersfield University
Neil Davies	Pragmatic Printing
Enza Giaracuni	CIM - Facilitator
Cliff Joilliffe	Aerotech
Dilwyn Jones	Emral
John Lampett	CPI
Martin O'Hara	CIM - Facilitator
Paul Shore	CIM
Paul Streatfield	Bosch-Rexroth
Nick Walker	iXscient
Nicky Athanassopoulou	IfM ECS - Facilitator
Andi Jones	IfM ECS - Facilitator

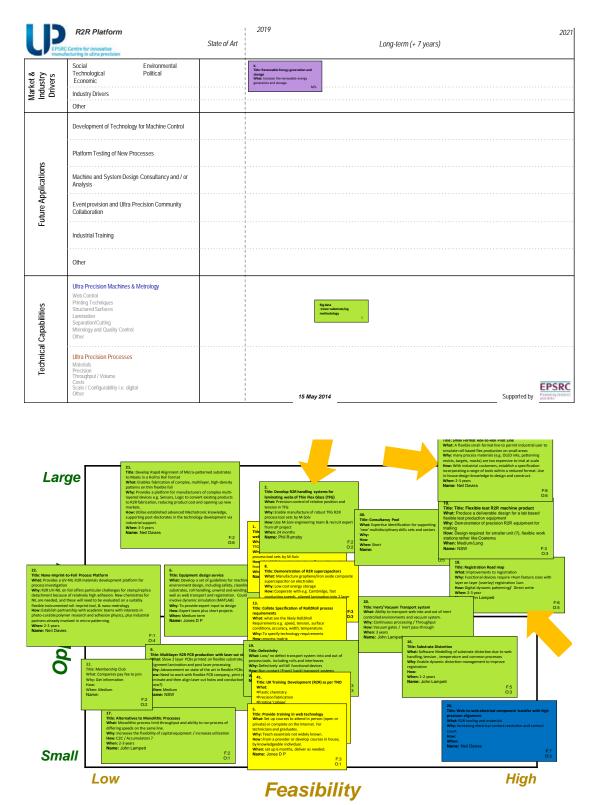
12. Appendix 2 – Participant Feedback

Feedback was received at the end of the workshop from 7 participants. 97% considered the workshop to be Excellent, Very Good or Good as well as useful and stimulating. All considered their participation worthwhile. The detailed feedback is shown below.

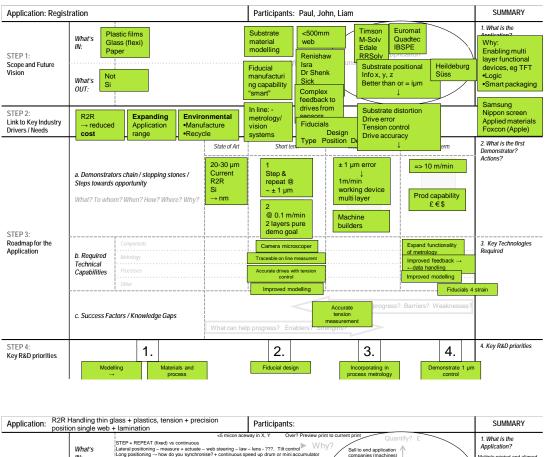
Appendix 3 – Workshop agenda 13.

09.45	Arrival	
10.00	Welcome, Introductions and Overview	Prof. P. Shore
10.20	Individual presentations on Applications	All
11.40	Prioritisation of the most important applications	All
12.30	Selection of top 3-5 Applications	All
13.00	Lunch	
13.45	Break-out Group Work: Explore the selected applications	In Groups
15.30	Identify/Understand the technologies to be developed/integrated	In Groups
16.30	Feedback and Review	All
17.30	Close	

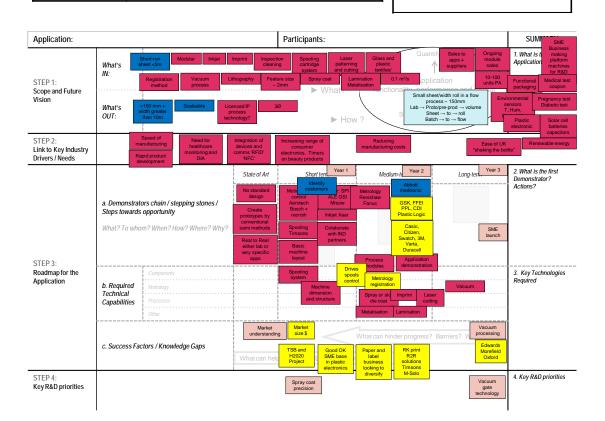

Appendix 4 – List of all Drivers and Industry 14. Needs


	Driver	Description	Ranking
A	Increasing environmental awareness i.e. resource and energy consumption	Designing and producing eco-friendly products, systems and services; promoting low carbon energy production and transport; incorporating renewable energy production; reducing resource utilisation	1
В	Reducing manufacturing and operating product costs	Pressure for reducing manufacturing costs for both components and overall systems, and reducing the operating costs for products	3
С	Increasing need for healthcare monitoring and diagnostics	Introducing new or improved methods for point- of-care diagnostics and health monitoring; reducing healthcare costs; increase the speed of healthcare monitoring and diagnostic methods	1
D	Integration of devices and communication systems	Information exchange between different devices aided by the internet; better integration of communication systems and a better connected mobile world	1
Е	Improving device portability and energy consumption	Designing and producing portable devices with low energy consumption; Improving battery life	

F	Increasing speed of manufacturing	Increasing speed of manufacturing, rapid volume scale up and faster turn around of products	2
G	Increasing range of consumer electronic devices	Increasing range and functionality of consumer electronic products and their sub-components	3
н	Better product design	Better product designs; design freedom; improved size, weight and cost	1
I	Ease of use and better user experience	Better or new user experiences and ease of use	
J	Improving Product Reliability & performance	Improving product and service reliability and performance; produce more rugged and stronger products	
к	Renewable energy generation and storage	Increase the generation and storage of renewable energy	2
L	Luxury commodities	Increase of demand for luxury commodities	1
Μ	Large areas	Requirement of processing large areas	1
Ν	Retrofit	Ability to implement new solutions or products into existing infrastructure	
0	High LIDT optics		
Ρ	Automotive – engine emissions	Increasing requirement to improve engine performance and reduce automotive emissions	
Q	Rapid product development		1
R	Ease of UK "shaking the bottle"		1
S	Standards in ultra precision R2R materials		
т	Processes that extract components from finished product		


Appendix 5 – Electronic transcription of 15. Workshop Outputs

	R2R Platform		2014				2016
man	RC Centre for innovative ufacturing in ultra precision	State of Art	1	Sho	ort term (+2 years)		
Market & Industry Drivers	Social Environmental Technological Political Economic		P. Title: Automotive - engine en What: Increasing requirement improving engine performano- reducing automotive emission	e and J. 5. Title: Improving Product Reliability & endorseroe S. What: Imp. 24.	N. Title: Retrofit W hat: Ability to implement new solutions or products into existing infrastructure.	B. Title: Reducing Manufactur Operating Product Costs What: Pressure for reducing manufacturing costs for bot components and overall sys reducing the operating costs products.	t tems, and
Mar	industry Drivers	L. Title: Ease of use and better user experience What: Better or new user experier and ease of use	F. Title: Increasing speed of manufacturing G. Title: Increasing range of consumer electronic devices	service reli performan rugged and What: Develop a sul standards to facilitate interchange of R to F	trapprecision S/N te of design e the materials materials What: increase of demand for juxury commodities	M. Title: Large areas What: Requirement of processing large areas.	D. Title: Integration of device communication systems What: Information exchang between different devices a hy the interner: hetter
	Development of Technology for Machine Control	15. Title: Evaluate	e Modelling of substrate distortion due to we on temperature and common processes	e: Develop R2R handling systems for single w & Glass (TFG) htt: Precision control of position and tension in 13. Title: Collate Specification of RolZRoll process What: what are the likely holZRoll	Title: Small Format Rel-to-Rol What: A flexible small-format I user to simulate roll-based flex Why: many process materials (Why: many process materials (based flex based flex Why: Den	E: Flexible test R2R machine oduce a deliverable design for a lab- oble test production equipme nenstrator of precision R2R Table Deliverable	17. Title: Alternatives to Monoli What: Monolithic process lin process of differing speeds o Why: Increases the flexibility utilization
st	Platform Testing of New Processes	what container whome unknow the analysis of the second sec		Requirements e.g. speed, tension, surface cond accuracy, width, temperature. Why: To specify technology requirements How: process matrix. When: Short term Name: P Streatfield	incorporating a range of tools v Use in-house design knowledge flexible wo	e for trialling ign required for smaller unit () prix stations rather like Coater dium/Long WW:En 0 0 0 0 0 0 0 0 0 0 0 0 0	How: 29. Viter Cleaning localised Name Minimise cleaning
plication	Machine and System Design Consultancy and / or Analysis		1 1 1 1	25.	Whet Set up a small barm that can ge machine and tackle problems hands ca knowledge, massumment and alignm Why: To provide quick solutions to co upplement their in-house expertise. Nov: 2-3 people, travel at short notic	o to a company in, equipped with inner tools. meaning and 32.	ables competion etc F: 0: 33. Title: Joint events
⁻ uture Applications	Event provision and Ultra Precision Community Collaboration		41. Title: UK Training Development (R2R)	Title: Integrating Capabilities What: Provide a central information point for al activity in ultra-precision manufacture and resex Why: New commercial entrants to the field are familiar with the capabilities silved y available. J team will be able to provide guidance, matching with competences and providing introductions	I the UK When: 6 months to establish, then on arch not In expert needs 38.	What: Companies pay fee to join Why: Get information How: When: Medium Name:	Title: Joint events What: Outside UK Why: Build knowledge of UK activity/business How: Joint events When: Medium Name:
Ľ	Industrial Training		PerTNO What: +Plastic chemistry +Procision fabrication +Printing college' +Packaging technology	How: initially look for government seed-funding largely funded by the users (consultancy). Where 1-2 years Name: Neil Davies		CL technicans and grad Why: Teach essentia How: From a provide bears: by hermitote) on the Internet. For Luites. Ils not widely known. er or develop courses in entite individual. Ir as needed.
	Other		8 + Food sector Why: Where Short Name: V Food Sector Name: P	2 Try to identify IP which we dapted.	43. Energy efficiency of production process 	4. Title: Technology Review What: Literature review, investigation current relevant projects worldwide (o funded), supplier capability and experi Why: To define "state of the art", and provide a design basis for further worl	rof F:3 eg EC O:1
Technical Capabilities	Ultra Precision Machines & Metrology Web Control Printing Techniques Structured Sarfaces Lamination Separation/Cutling Micrology and Quality Control Other		perdections speeds, aligned lamination reto 2 layer Weiner.Short Name: NW Fill 0:1	S Writek: Short, optiate commany afterwards Name: Jones D P	Seign för efficiency 5	Heer, Reading, and visits to key compa and institutions Where: Short term but maintain afters Name: Joins D P	nies
Technica	Ultra Precision Processes Materials Precision Troughput/ Volume Costs Scale / Configurability i.e. digital Other		15 May .	2014		Supported I	EPSRC Patering reserve



IfM Education and Consultancy Services Limited. Registration No: 3486934. Registered in England. The Old Schools, Trinity Lane, Cambridge, CB2 1TN

STEP 1: Scope and Future Vision	What's IN: What's OUT:	STEF + REPEAT (fixed) vs continuous, Lateral positioning - measure + actuat Long positioning - how do you synchr Experimental text + modelling Need for control algosote Specific procates except where they Specific activities CPI (Peer) Large non electronics CIM (Cambridg Large non electronics CIM (Cambridg	onise? + continuo Need print Material propert Stretch, tension materially affect ir e) H:Flexible	us speed up dru drum set-off ties , thermal expans ntegrate Defect – detect a	m or mini accumulator METROLOGY sion, shrinkage at?	Sell to end application companies (machine: Ap Sell to machine builders (IP) Unctionality, per Replace Better than current is	s) I plication formance and form	Application? Application? Multiple printed and aligned layers go UED 72/lighting PV PV extension of the set of the set of the set displays Flexible circuit boards Is there a supply
STEP 2: Link to Key Industry Drivers / Needs	↑sp F:F spe G:1	Need for flexible	New formats Lightweight Integrated p K: Large are M:	roducts	toms(??) and long term profitability + UK benefit	'Renishaw' Timson	'3M' ??? On Dupont 'RK' Merk, BASF	t, chain for EXIT? Not really Timson M-Solv (foreign)
STEP 3: Roadmap for the Application	a. Demonstrat Steps towards	cess integration 30 ors chain / stepping stones / copportunity m? When? How? Where? Why? Components Metrology Processes Other	?? At 30-50 μ	Make gratin Surfa Make Pass	Short lerm 12 (2015) passive film + g (sunched ?? co) + measure large oven us film (on pads) + in glass traction and compensate Froce + paslibri Froce + paslibri			2. What is the first Demonstrator? Actions? Ztarget passue?? Films for companies (PV) Zits Light emitting film, tor a lighted Benorestrator G4 2015 J. Key Technologies Required Instrument film + sensors Passive film fab. Sict die = high Low findtone
	c. Success Factors / Knowledge Gaps		Understan modelling problem	is a	Substrate variabili Process effects Specifications	at can hinder progres	s? Barriers? Weakne	Choice of aligned
STEP 4: Key R&D priorities								Spindles Control system Sensors and measurements Substrates

Mini-Business Plan		Opportunity: Active film business Opportunities	s + R&D	Team:			
Customer Need Market Need					opportunity for		
Product / service offering	Passive film → activ → Adv. → [large sc Machine building ca	ale mould fab]		+ active f + M/C bu [TSB]	nims ilders ←su∣	Packa Displa Brand pply cha	ays ling
Competitors	TNO → VDL flow Fraunhofers Samsung 3M			+ CPI →	partners ısinesses		
Current technology and capability readiness	$\label{eq:LAE} \begin{array}{l} LAE \rightarrow \text{contacts} \rightarrow \\ MET \rightarrow EU \mbox{ projects} \\ \\ UP \rightarrow \mbox{ build position} \end{array}$			This will be EPSRC F	delivered by: Funding	0	area electronic
Specify required outcomes and timing	By 2016 → passive	film → income Cred justification of renewal		CPI/Cata	pult/New bus		precision
Key Actions	*Establish passive f	ilm fab capability		Market / Te	chnology intel	ligence gap	os
Key enablers	As per registration	summary		Up positio Films	oning of films Awareness Data		
Key barriers and risksUpside and downsideCritical Gaps	International comp	+ speed of their development funding 'stop	ps'		Data		

Mini-Business Plan		Opportunity: Small form	at R2R	1 [Team:	Neil Davies	Cliff Joliffe		
] [Martin O'Hara			
Customer Need Market Need	products	tool to facilitate development o ale to volume (ie prototype/pre Il and batch-to-flow	•			portunity for: ation, plastic ele e builders	ctronics +		
Product / service offering	Modular roll processing machine Low consumable cost (low volume processes)				Small volume applications to realise cost benefits New business creation without high production costs				
Competitors	Sheet based lab & custom built roll processing (all 'one-off')				product				
Current technology and capability readiness		-art roll-to-roll machine capabil In be adapted from existing 3 rd			This will be de	-			
and timing Have operating spo Identify demonstrate		stomer + market size within 12 months ol-to-spool within 12 months or + fabricate by 24 months feasibility by 24 months ths			CIM in UP → technology Existing paper/label equipment manufacturers				
Key Actions	Build business case Identify funding sou				Market / Techr	nology intelligence g	aps		
Key enablers	TSB or Horizon 2020 funding Industrial sponsor			Market size enough?)	+ understanding	g (is UK big			
 Key barriers and risks Upside and downside Critical Gaps 	Wider industry not interested (lab \rightarrow vol) Could lessen move to large scale volume Lowers barrier of entry for other companies Vacuum processes + feasibility in-line?				Has it alrea	dy been done ov	verseas?		