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Abstract Valuation methods that involve calculating a statistical
expectation value are inadequate and misleading for single
projects and small portfolios. For these the full range of outcomes
must be considered, balancing the possibility of loss or gain. Two
new tools, the Value Range Diagram and the Risk Aversion
Diagram are proposed to help managers assess small portfolios.

I. INTRODUCTION

Technology-based projects often face large uncertainties
about the cost and timescale of the work and the timing and
magnitude of the benefits that will flow from it. At their
outset, and often for much of their lifetime, such projects face
a range of possible outcomes. It is conventional to incorporate
these uncertainties into the valuation process by multiplying
possible outcomes by their probabilities to give a statistical
expectation value. Although this is appropriate for valuing a
portfolio containing very many projects it is logically incorrect
and practically misleading for individual projects and for small
portfolios. In these cases a single point valuation is inadequate
and the range of possible outcomes must be taken into account.
The value of a project will then depend on how managers
balance the possibility of a relatively poor outcome against the
chance of above-average performance. In this paper we
discuss possible approaches to comparing projects, taking
account of the spread of possibilities as well as the mean, and
propose some new tools for choosing a small portfolio of
projects. We argue that the majority of project portfolios are
small in this sense so valid valuation is a practical problem for
many, perhaps most, companies.

II. SMALL AND LARGE PORTFOLIOS

It is usual [1] to value risky projects by computing the mean,
or expected, financial return. For example if a project has
three possible outcomes, with values a, b and c, whose
probabilities are estimated to be p,, p, and p., then the
expectation value, E, for the project is:

E= ap,t b-pb +cpe ( 1)

This equation, of course, does not predict the value of
the project itself, which will be either a, or b, or ¢c. The

expectation value, predicts the outcome of a large number of
projects, in the sense that the sum of the outcomes of n projects
becomes relatively closer and closer to n.E as n increases.
Hence, for sufficiently large portfolios the range of possible
outcomes of each project may be ignored for the purposes of
valuing the total; the individual expectations are sufficient.
Small portfolios differ from large ones in that the range of
outcomes for each project cannot be ignored. This is the
essence of the problem of valuing small portfolios.

The value of a sufficiently large portfolio of projects
closely approaches the sum of their expectations because, as is
well known, when uncorrelated random variables are added the
ratio of the standard deviation to the mean reduces as the
square root of the number of variables. Thus the relative
spread in the value of a portfolio of 10 projects will be about
1/3™ that of a single project; that of 25 projects will be 1/5™.
However, this reduction applies only if the outcomes of all the
projects are uncorrelated, a rather unlikely circumstance if they
are all conducted in the same organisation. Any correlation
between projects makes the uncertainty in the portfolio value
greater. Small portfolios such as are considered here may be
the rule rather than the exception in real businesses. In any
case, large portfolios are made up from small ones so that
valuation methods that are valid for small portfolios can also
be applied to large (though not vice versa).

II.  VALUING A SINGLE PROJECT

A project will usually have a number of phases of work, each
with a possible range of costs, and managers will have the
option to proceed, or not, at the end of each phase (Fig 1).

There may also be the possibility of changing the direction of
the project depending on the outcome of earlier work, so the
linear decision tree may branch into a network. All the
outcomes that are judged to be plausible are included, with
probabilities assigned to them. Costs and incomes— or more
generally a range of costs and incomes — can be assigned to
each phase.

A decision trees or network diagram can be readily analysed
to yield the expectation value (or Expected Commercial Value,
[2]) of the project. More generally, Monte-Carlo techniques
[3] can be used to explore the range of possible values giving a
probability distribution of outcomes, ranging
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Figl. Decision tree for a simple multi-phase project.
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Fig 2. Schematic probability diagram for the outcome of a project

from the least to the most favourable. A schematic version of
a probability distribution for a project is shown in Fig 2.

However, there are fundamental problems in assigning
probabilities to events in a project plan, as is required in this
process. They cannot be measured (as one would for a
physical process) by taking samples from a number of identical
previous events because there are none; each project is unique.
The best one can do is to collect data from similar past projects
and hope to deduce from them what may happen in a new
project. Inevitably, this involves a great deal of interpretation
and personal judgement. In practice this process is often
highly flawed, as we discuss further below. Furthermore, there
is no way to validate such estimates before or after the event.
It cannot generally be proved even in principle that the
probability of success of a project actually was (or was not) a
particular figure.

Evidently, people do make general judgements about which
future events are likely and which are not; life would be
impossible otherwise. However, any numerical values placed
on the probabilities are at best highly approximate, and
possibly meaningless. Hence one should not place much
reliance on the details of any probability distributions
calculated from them.

IV. ISSUES IN ESTIMATING VALUES AND PROBABILITIES USED IN
DECISION TREES.

Research into human estimating skills has shown that our
ability to assess probabilities is not impressive. For example,
Kahnemann, Slovic and Tversky [4] point out that people
generally make such estimates not on the basis of correct
statistical reasoning but according to certain heuristics. One
such is the representativeness heuristic: we tend to judge
whether something belongs to a class simply by the extent to
which it resembles members of that class. This leads to a
number of problems, of which the most relevant here is
insensitivity to sample size [5]. People (even those who are
well-versed in the theory of statistics) appear to have a
persistent tendency to expect a small sample to be closely
representative of the population it comes from. This causes a
propensity to over-estimate the significance of a few instances
- and hence of our own personal experience.

Another estimating heuristic is termed availability [6]: the
tendency to assess the frequency of a class by the ease with
which examples of it come to mind. This is reasonable, but
may be affected by any bias in the recall process. The
emotional force of instances may also make them easier to
recall so we tend to over-estimate the frequency of high-impact
triumphs and disasters.

A third heuristic is anchoring: the tendency to be unduly
influenced by the most recently acquired information.

The biases that may come from these heuristics are
apparently innate and not easily corrected. They certainly cast
doubt on the accuracy that can be expected of predictions
about events in innovation projects. “For anyone who would
wish to view man as a reasonable intuitive statistician, such
results are discouraging" [7]. In addition predictions may also
be adversely affected by social factors such as the influence of
powerful or charismatic individuals, or by groupthink [8]: the
propensity of tight-knit groups to over-value consensus and so
mistake agreement for truth. These, however, may be
mitigated by careful design of the estimating process [9].

V. APORTFOLIO OF 2 PROJECTS

The problem of valuing and comparing a small number of
projects is shown most clearly with two projects, such as those
whose distributions are shown schematically in Fig 3.

Intuitively, it seems that the different ranges of outcome of
these two projects should lead to different valuations, even
though their probability distributions have the same mean and
the same mode. The issue is to find a compact and logically
consistent way to express this. We call this the “Range
Valuation” problem.

In the world of finance, risky investments (those whose price
is expected to fluctuate considerably) attract higher returns
than those that are more predictable [10]. Equities on average
typically attract a higher yield than government bonds, which
are assumed to have effectively zero risk. The “risk premium”
for the equity market reflects the risk aversion of the average
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Fig 3. Two projects with the same mean outcome, but different distributions

investor, which is basically a matter of sentiment rather than
calculation.

Dembo and Freeman [11] have suggested that competing
projects should be valued as the difference between the
possible upsides and downsides in relation to a benchmark
(such as the bank rate, or some standard for investments set in
the company). The value, V, of the project would then be:

V = Upside - Downside 2)

Here the Upside is the integral of the distribution above the
benchmark and the Downside is the integral of the distribution
below. Equation (2) would give a different valuation for the
two value distributions illustrated in Fig 3, unless the
benchmark happened to coincide with the peak. The narrower
distribution would be the more valuable if the benchmark is
below the peak of the distributions while the broader would be
the more valuable if the benchmark is above the peak.

A refinement is to apply different weightings to the
Downside and the Upside. Dembo and Freeman suggest that
the Upside may be thought of as the chance to participate in a
gamble to make more money than the benchmark. A 20%
chance of making £1000 is worth something, but for most
people the value, or Utility, to them is not as much as the
expectation value of £200. Similarly, the utility value to be
placed on the downside could be the amount one would be
willing to pay to insure against such a loss. Again, this would
generally be less than the expectation. The utility to be
assigned to the upsides and downsides seems to depend both
on the sums involved and the attitude of the investor to the
risk. Few people would consider insuring against a potential
loss of £1, but few would ignore one of £1M. It seems that
very large losses or gains in relation to the benchmark should
be weighted differently. Thus the value, V, is:

V = x.Upside — y.Downside 3)

The utility weightings, x and y, depend on the investor’s
tolerance of risk, and depend on the upside and downside
values themselves.
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Fig 4. Possible forms for the upside and downside weighting factors

One would expect the factors to increase with distance from
the benchmark as shown in Fig 4 because a very large loss
may be catastrophic, while a very large gain might have a
transforming effect on the organization.

Ignoring their value-dependence, the discounts may be
combined into a single figure representing the risk tolerance of
the organization.

V = Upside - A.Downside 4

Here A is greater than one if the organization is risk-averse and
less than one if not.

This approach offers a promising way of including the
spread of possible outcomes into project evaluation. However,
it requires a rational way of determining what the discount
curves should be linking the for particular projects in particular
organizations. More research is needed here. If these
weightings could be determined it would be possible, using
equation 3, to calculate project values taking proper account
of the range of possible outcomes. This would be a solution to
the Range Valuation problem mentioned above.

VI. INCREMENTAL VALUATION

The early stages of a technology project are usually devoted
to improving knowledge and understanding. This serves to
clarify the possibilities and options available and so to narrow
the range of likely outcomes of the project. A solution to the
Range Valuation problem would make it possible to place a
value on this reduction in the range of likely outcomes and so
to place a value on each phase of preliminary work. This
would be a new and valuable insight. When choices have to be
made between projects it may be better to choose not the
project that has the higher overall expectation value, but the
one whose next phase of work adds the most value.



VII. RISK-REWARD DIAGRAMS FOR SMALL PORTFOLIOS
A.  Previous Methods

In the absence of a solution to the Range Valuation problem
we must examine how familiar tools of portfolio management
should be adapted for use with small portfolios. The most
widely-used of these is the risk-reward diagram [12]. In this,
projects are plotted on a two-dimensional grid where one
dimension represents the value of the project and the other its
perceived risk. The idea is that managers can readily review
the balance of risk and reward in the portfolio and ensure it
conforms to their judgement of what is required.

In the probability-distribution approach to project valuation
just outlined, risk is not a separate parameter but merely an
expression of the range of plausible outcomes. A single
project does not have a single outcome and a greater or smaller
level of risk; it just has a greater or lesser range of possible
outcomes. This perception accords well with our experience in
collecting the information for drawing risk-reward diagrams.
Participants often find the concept of risk too imprecise. A
project may have a low risk of outright technical failure but a
high risk of falling somewhat short of expectations. Is this high
or low risk? This has led to the proposal to use ellipses instead
of circles on a risk-reward diagram [13], where the width of
the ellipse represents the range of possible rewards, with the
risk dimension representing only the probability of technical
failure. This is a step forward, but it assumes that the technical
phase will end either in complete success or in complete
failure, which is not necessarily the case. Furthermore it does
not distinguish projects where the risk of failure can be tested
early and at low cost from those that retain a significant
possibility of late, and expensive, cancellation.

B. The Value Range Diagram

We propose that for small portfolios the risk-reward diagram
should be replaced by a Value Range Diagram, in which the
two scales are the highest and lowest values expected for the
project. These can be obtained by constructing a decision tree
for the project including all phases, costs and decision points,
and drawing a probability diagram for the outcomes (for
example using Monte-Carlo techniques). The Highest Likely
Value (HLV) and the Lowest Likely Value (LLV) are then
selected and plotted on a Value Range Diagram such as Fig 5.
In practice managers will not necessarily choose the absolute
extremes of the probability diagram for the HLV and LLV but
will use some judgement, bearing in mind that the uncertainty
of the data and the actions that they may themselves take to
limit the extreme outcomes as the project develops.

The two axes of a Value Range Diagram are the highest
likely value, HLV, and the lowest likely value, LLV. The
scales may absolute values such as NPV, or performance ratios
such as return on investment. The horizontal and vertical
scales will generally be different, because HLVs will usually
be significantly larger than LLVs. A performance benchmark

may be included, as in Fig 5. The shaded area on the upper
left is the illogical domain where worst returns exceed best.
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Fig. 5. The Value Range diagram

The bold diagonal line represents the case of zero uncertainty,
where HLV=LLV.

The Value Range diagram is used in a similar way to a Risk-
Reward diagram. It displays the current state of the portfolio
in a way that helps managers to appreciate their exposure to
gains and losses, leaving to their judgement whether the
balance is appropriate. As they progress, projects will be
expected to migrate upwards towards the area where both HLV
and LLV are above the benchmark. As with the risk-return
diagram, the size of the circles can represent the investment
required to complete the project, and colour or shading can
indicate the type of project or its maturity.

C. Risk Tolerance Diagram

An alternative way to display the probability diagram
information is to calculate the risk tolerance parameter, A, in
(4), that would bring the value of the project to the benchmark.
We call this the Risk Tolerance Value for the project. We
would emphasise that the Risk Tolerance Value is not the risk
of the project in the conventional sense of probability of
failure. It is the risk tolerance the organisation would have to
have for it to regard the spread of possible returns above and
below the benchmark as just acceptable. The concept is
analogous to the Internal Rate of Return used in financial
analysis, which is the discount rate that would reduce the
calculated NPV to zero. Projects may be displayed for
decision making on a Risk Tolerance diagram, with the Risk
Tolerance value as one dimension and the mean return, or
profitability, on the other.



VIII. CONCLUSIONS

We believe that the use of a single mean value for valuing

projects is logically flawed and seriously misleading unless the
portfolio is very large, probably larger than is the case for most
businesses. For small portfolios the range of possible outcomes
cannot be neglected. The value of a project will then depend
on how managers balance the possibility of a relatively poor
outcome against the chance of above-average performance.
No coherent way appears to be available to say what risk
tolerance an organisation ought to have for its projects and so
it is not (yet) possible to propose a single measure of value that
is valid for single projects and small portfolios. Further
investigation is required here.
We present two new tools, the Value Range Diagram and the
Risk Tolerance Diagram which provide a straightforward and
logically coherent approach to assessing the balance of projects
in a small portfolio, though still leaving the final choice to
management judgement.
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