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Abstract  Valuation methods that involve calculating a statistical 
expectation value are inadequate and misleading for single 
projects and small portfolios. For these the full range of outcomes 
must be considered, balancing the possibility of  loss or gain. Two 
new tools, the Value Range Diagram and the Risk Aversion 
Diagram are proposed to help managers assess small portfolios. 

 
 

I.     INTRODUCTION 
 
   Technology-based projects often face large uncertainties 
about the cost and timescale of the work and the timing and 
magnitude of the benefits that will flow from it.  At their 
outset, and often for much of their lifetime, such projects face 
a range of possible outcomes.  It is conventional to incorporate 
these uncertainties into the valuation process by multiplying 
possible outcomes by their probabilities to give a statistical 
expectation value.  Although this is appropriate for valuing a 
portfolio containing very many projects it is logically incorrect 
and practically misleading for individual projects and for small 
portfolios. In these cases a single point valuation is inadequate 
and the range of possible outcomes must be taken into account. 
The value of a project will then depend on how managers 
balance the possibility of a relatively poor outcome against the 
chance of above-average performance.  In this paper we 
discuss possible approaches to comparing projects, taking 
account of the spread of possibilities as well as the mean, and 
propose some new tools for  choosing a small portfolio of 
projects.  We argue that the majority of project portfolios are 
small in this sense so valid valuation is a practical problem for 
many, perhaps most, companies. 
 

II.    SMALL AND LARGE PORTFOLIOS 
 
   It is usual [1] to value risky projects by computing the mean, 
or expected, financial return.  For example if a project has 
three possible outcomes, with values a, b and c, whose 
probabilities are estimated to be pa, pb and pc, then the 
expectation value, E, for the project is: 
  

E =  a.pa + b.pb   + c.pc                ( 1) 
 

This equation, of course, does not predict the value of 
the project itself, which will be either a, or b, or c.  The 

expectation value, predicts the outcome of a large number of 
projects, in the sense that the sum of the outcomes of n projects 
becomes relatively closer and closer to n.E as n increases.  
Hence, for sufficiently large portfolios the range of possible 
outcomes of each project may be ignored for the purposes of 
valuing the total; the individual expectations are sufficient.  
Small portfolios differ from large ones in that the range of 
outcomes for each project cannot be ignored.  This is the 
essence of the problem of valuing small portfolios.    

   The value of a sufficiently large portfolio of projects 
closely approaches the sum of their expectations because, as is 
well known, when uncorrelated random variables are added the 
ratio of the standard deviation to the mean reduces as the 
square root of the number of variables.  Thus the relative 
spread in the value of a portfolio of 10 projects will be about 
1/3rd that of a single project; that of 25 projects will be 1/5th.  
However, this reduction applies only if the outcomes of all the 
projects are uncorrelated, a rather unlikely circumstance if they 
are all conducted in the same organisation.  Any correlation 
between projects makes the uncertainty in the portfolio value 
greater.  Small portfolios such as are considered here may be 
the rule rather than the exception in real businesses. In any 
case, large portfolios are made up from small ones so that 
valuation methods that are valid for small portfolios can also 
be applied to large (though not vice versa). 
 

III.    VALUING A SINGLE PROJECT 
         

   A project will usually have a number of phases of work, each 
with a possible range of costs, and managers will have the 
option to proceed, or not, at the end of each phase (Fig 1). 
   There may also be the possibility of changing the direction of 
the project depending on the outcome of earlier work, so the 
linear decision tree may branch into a network.  All the 
outcomes that are judged to be plausible are included, with 
probabilities assigned to them. Costs and incomes– or more 
generally a range of costs and incomes – can be assigned to 
each phase.  
   A decision trees or network diagram can be readily analysed 
to yield the expectation value (or Expected Commercial Value, 
[2]) of the project.  More generally, Monte-Carlo techniques 
[3] can be used to explore the range of possible values giving a 
probability distribution of outcomes, ranging  
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Fig1. Decision tree for a simple multi-phase project. 
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Fig 2. Schematic probability diagram for the outcome of a project 
 
from the least to the most favourable.  A schematic version of 
a probability distribution for a project is shown in Fig 2.    
   However, there are fundamental problems in assigning 
probabilities to events in a project plan, as is required in this 
process.  They cannot be measured (as one would for a 
physical process) by taking samples from a number of identical 
previous events because there are none; each project is unique.  
The best one can do is to collect data from similar past projects 
and hope to deduce from them what may happen in a new 
project.  Inevitably, this involves a great deal of interpretation 
and personal judgement.  In practice this process is often 
highly flawed, as we discuss further below.  Furthermore, there 
is no way to validate such estimates before or after the event.  
It cannot generally be proved even in principle that the 
probability of success of a project actually was (or was not) a 
particular figure. 
   Evidently, people do make general judgements about which 
future events are likely and which are not; life would be 
impossible otherwise. However, any numerical values placed 
on the probabilities are at best highly approximate, and 
possibly meaningless.  Hence one should not place much 
reliance on the details of any probability distributions 
calculated from them.    

 
IV.    ISSUES IN ESTIMATING VALUES AND PROBABILITIES USED IN 

DECISION TREES. 
 
   Research into human estimating skills has shown that our 
ability to assess probabilities is not impressive.  For example, 
Kahnemann, Slovic and Tversky [4] point out that people 
generally make such estimates not on the basis of correct 
statistical reasoning but according to certain heuristics.  One 
such is the representativeness heuristic: we tend to judge 
whether something belongs to a class simply by the extent to 
which it resembles members of that class.  This leads to a 
number of problems, of which the most relevant here is 
insensitivity to sample size [5].  People (even those who are 
well-versed in the theory of statistics) appear to have a 
persistent tendency to expect a small sample to be closely 
representative of the population it comes from.  This causes a 
propensity to over-estimate the significance of a few instances 
- and hence of our own personal experience. 
   Another estimating heuristic is termed availability [6]: the 
tendency to assess the frequency of a class by the ease with 
which examples of it come to mind.  This is reasonable, but 
may be affected by any bias in the recall process.  The 
emotional force of instances may also make them easier to 
recall so we tend to over-estimate the frequency of high-impact 
triumphs and disasters.  
   A third heuristic is anchoring: the tendency to be unduly 
influenced by the most recently acquired information. 
   The biases that may come from these heuristics are 
apparently innate and not easily corrected. They certainly cast 
doubt on the accuracy that can be expected of predictions 
about events in innovation projects.  “For anyone who would 
wish to view man as a reasonable intuitive statistician, such 
results are discouraging" [7].  In addition predictions may also 
be adversely affected by social factors such as the influence of 
powerful or charismatic individuals, or by groupthink [8]: the 
propensity of tight-knit groups to over-value consensus and so 
mistake agreement for truth.  These, however, may be 
mitigated by careful design of the estimating process [9].  
 

V.    A PORTFOLIO OF 2 PROJECTS 
 
   The problem of valuing and comparing a small number of 
projects is shown most clearly with two projects, such as those 
whose distributions are shown schematically in Fig 3. 
   Intuitively, it seems that the different ranges of outcome of 
these two projects should lead to different valuations, even 
though their probability distributions have the same mean and 
the same mode.  The issue is to find a compact and logically 
consistent way to express this.  We call this the “Range 
Valuation” problem.  
   In the world of finance, risky investments (those whose price 
is expected to fluctuate considerably) attract higher returns 
than those that are more predictable [10].  Equities on average 
typically attract a higher yield than government bonds, which 
are assumed to have effectively zero risk.  The “risk premium”   
for the equity market reflects the risk aversion of the average  
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Fig 3. Two projects with the same mean outcome, but different distributions 

 
investor, which is basically a matter of sentiment rather than 
calculation. 
   Dembo and Freeman [11] have suggested that competing 
projects should be valued as the difference between the 
possible upsides and downsides in relation to a benchmark 
(such as the bank rate, or some standard for investments set in 
the company).  The value, V, of the project would then be:  
 

V = Upside - Downside          (2) 
 

Here the Upside is the integral of the distribution above the 
benchmark and the Downside is the integral of the distribution 
below.  Equation (2) would give a different valuation for the 
two value distributions illustrated in Fig 3, unless the 
benchmark happened to coincide with the peak. The narrower 
distribution would be the more valuable if the benchmark is 
below the peak of the distributions while the broader would be 
the more valuable if the benchmark is above the peak. 
   A refinement is to apply different weightings to the 
Downside and the Upside.  Dembo and Freeman suggest that 
the Upside may be thought of as the chance to participate in a 
gamble to make more money than the benchmark.  A 20% 
chance of making £1000 is worth something, but for most 
people the value, or Utility, to them is not as much as the 
expectation value of £200. Similarly, the utility value to be 
placed on the downside could be the amount one would be 
willing to pay to insure against such a loss. Again, this would 
generally be less than the expectation.  The utility to be 
assigned to the upsides and downsides seems to depend both 
on the sums involved and the attitude of the investor to the 
risk.  Few people would consider insuring against a potential 
loss of £1, but few would ignore one of £1M.  It seems that 
very large losses or gains in relation to the benchmark should 
be weighted differently.  Thus the value, V, is:  

 
V =  x.Upside – y.Downside       (3) 

 

The utility weightings, x and y, depend on the investor’s 
tolerance of risk, and depend on the upside and downside 
values themselves.   
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Fig 4. Possible forms for the upside and downside weighting factors 

 
One would expect the factors to increase with distance from 
the benchmark as shown in Fig 4 because a very large loss 
may be catastrophic, while a very large gain might have a 
transforming effect on the organization.    
Ignoring their value-dependence, the discounts may be 
combined into a single figure representing the risk tolerance of 
the organization. 
 

V = Upside - λ.Downside            (4) 
 

Here λ is greater than one if the organization is risk-averse and 
less than one if not. 
   This approach offers a promising way of including the 
spread of possible outcomes into project evaluation.  However, 
it requires a rational way of determining what the discount 
curves should be linking the for particular projects in particular 
organizations.  More research is needed here.  If these 
weightings could be determined it would be possible, using 
equation 3, to calculate  project values taking proper account 
of the range of possible outcomes.  This would be a solution to 
the Range Valuation problem mentioned above.   
 

VI.    INCREMENTAL VALUATION 
 
   The early stages of a technology project are usually devoted 
to improving knowledge and understanding.  This serves to 
clarify the possibilities and options available and so to narrow 
the range of likely outcomes of the project.  A solution to the 
Range Valuation problem would make it possible to place a 
value on this reduction in the range of likely outcomes and so 
to place a value on each phase of preliminary work.  This 
would be a new and valuable insight.  When choices have to be 
made between projects it may be better to choose not the 
project that has the higher overall expectation value, but the 
one whose next phase of work adds the most value. 
 
 



 
VII.    RISK-REWARD DIAGRAMS FOR SMALL PORTFOLIOS 

 
A.    Previous Methods 
   
 In the absence of a solution to the Range Valuation problem 
we must examine how familiar tools of portfolio management 
should be adapted for use with small portfolios.  The most 
widely-used of these is the risk-reward diagram [12].  In this, 
projects are plotted on a two-dimensional grid where one 
dimension represents the value of the project and the other its 
perceived risk.  The idea is that managers can readily review 
the balance of risk and reward in the portfolio and ensure it 
conforms to their judgement of what is required.  
   In the probability-distribution approach to project valuation 
just outlined, risk is not a separate parameter but merely an 
expression of the range of plausible outcomes.  A single 
project does not have a single outcome and a greater or smaller 
level of risk; it just has a greater or lesser range of possible 
outcomes. This perception accords well with our experience in 
collecting the information for drawing risk-reward diagrams.  
Participants often find the concept of risk too imprecise.  A 
project may have a low risk of outright technical failure but a 
high risk of falling somewhat short of expectations. Is this high 
or low risk?  This has led to the proposal to use ellipses instead 
of circles on a risk-reward diagram [13], where the width of 
the ellipse represents the range of possible rewards, with the 
risk dimension representing only the probability of technical 
failure.  This is a step forward, but it assumes that the technical 
phase will end either in complete success or in complete 
failure, which is not necessarily the case.  Furthermore it does 
not distinguish projects where the risk of failure can be tested 
early and at low cost from those that retain a significant 
possibility of late, and expensive, cancellation.  
  
B.   The Value Range Diagram 
    
We propose that for small portfolios the risk-reward diagram 
should be replaced by a Value Range Diagram, in which the 
two scales are the highest and lowest values expected for the 
project.  These can be obtained by constructing a decision tree 
for the project including all phases, costs and decision points, 
and drawing a probability diagram for the outcomes (for 
example using Monte-Carlo techniques).  The Highest Likely 
Value (HLV) and the Lowest Likely Value (LLV) are then 
selected and plotted on a Value Range Diagram such as Fig 5.  
In practice managers will not necessarily choose the absolute 
extremes of the probability diagram for the HLV and LLV but 
will use some judgement, bearing in mind that the uncertainty 
of the data and the actions that they may themselves take to 
limit the extreme outcomes as the project develops. 
   The two axes of a Value Range Diagram are the highest 
likely value, HLV, and the lowest likely value, LLV. The 
scales may absolute values such as NPV, or performance ratios 
such as return on investment.  The horizontal and vertical 
scales will generally be different, because HLVs will usually 
be significantly larger than LLVs.  A performance benchmark  
 

 
may be included, as in Fig 5.   The shaded area on the upper 
left is the illogical domain where worst returns exceed best.  
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Fig. 5. The Value Range diagram 
 
The bold diagonal line represents the case of zero uncertainty, 
where HLV=LLV.  
   The Value Range diagram is used in a similar way to a Risk-
Reward diagram.  It displays the current state of the portfolio 
in a way that helps managers to appreciate their exposure to 
gains and losses, leaving to their judgement whether the 
balance is appropriate.  As they progress, projects will be 
expected to migrate upwards towards the area where both HLV 
and LLV are above the benchmark.  As with the risk-return 
diagram, the size of the circles can represent the investment 
required to complete the project, and colour or shading can 
indicate the type of project or its maturity.   
 

C. Risk Tolerance Diagram 
 

   An alternative way to display the probability diagram 
information is to calculate the risk tolerance parameter, λ, in 
(4), that would bring the value of the project to the benchmark.  
We call this the Risk Tolerance Value for the project. We 
would emphasise that the Risk Tolerance Value is not the risk 
of the project in the conventional sense of probability of 
failure.  It is the risk tolerance the organisation would have to 
have for it to regard the spread of possible returns above and 
below the benchmark as just acceptable.  The concept is 
analogous to the Internal Rate of Return used in financial 
analysis, which is the discount rate that would reduce the 
calculated NPV to zero.  Projects may be displayed for 
decision making on a Risk Tolerance diagram, with the Risk 
Tolerance value as one dimension and the mean return, or 
profitability, on the other. 
 

 
 
 
 
 



 
VIII.   CONCLUSIONS 

 
   We believe that the use of a single mean value for valuing 
projects is logically flawed and seriously misleading unless the 
portfolio is very large, probably larger than is the case for most 
businesses. For small portfolios the range of possible outcomes 
cannot be neglected.  The value of a project will then depend 
on how managers balance the possibility of a relatively poor 
outcome against the chance of above-average performance.  
No coherent way appears to be available to say what risk 
tolerance an organisation ought to have for its projects and so 
it is not (yet) possible to propose a single measure of value that 
is valid for single projects and small portfolios. Further 
investigation is required here.   
We present two new tools, the Value Range Diagram and the 
Risk Tolerance Diagram which provide a straightforward and 
logically coherent approach to assessing the balance of projects 
in a small portfolio, though still leaving the final choice to 
management judgement. 
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