

The Real Value of the Developmental BOM in a Gated NPD Project

Michael Flanagan Accounting, Finance and Economics Department MMUBS 4th September 2013

Summary

- Whether a new product meets its BOM cost target and can deliver an acceptable financial contribution is often down to chance and subject to an element of manipulation.
- To mitigate this problem we develop and demonstrate a theoretical method to notionally hedge and thereby value the stochastic price risk embedded in the cost of the materials and components specified in the Developmental BOM.
- Empirical testing would be required to verify whether its adoption leads to improved NPD outcomes reducing the number of new products with low financial contributions.

Context

- Procurement Risk Management (Nagali 2005)
 - Company value can be influenced by volatile cash flows.
 - The central importance of NPD and the Developmental BOM.
- NPD projects can in practice be like a "hot potato" game.
 Chance often determines whether you are a "hero" or a "zero".
- "New" components are often introduced to hit tight cost targets with only cursory regard to future performance.
- In-house/subcontracted manufacturing are left to sort out the "mess" in the exploitation phase.

Problem Formulation

- Standard TARGET COST PRICING Method (Cooper & Slagmulder 2002)
 - Deterministic
 - Helps reject potential NPD financial underperformers
 - Has no relationship to the exploitation phase (e.g. Purchasing)
- Expanded TARGET COST PRICING Method
 - Stochastic
 - Has a relationship to the exploitation phase.
 - Forces the exploitation phase to be more proactive.

- The Developmental BOM as a financial asset.
 - The concept of a risk free portfolio
 - The exploitation phase writes a "notional" call option to the project.
 - The cost of the option (C_t) is added to the standard TCP target.
 - The value of the option changes over time as components and their "financial" characteristics change.
 - The "option writers" are in turn forced to hedge their option.

Option Price (C_t) Derivation

- Asian (or average rate) Option
 - The strike or exercise price is the average of the component estimates over the previous months.
 - Used extensively in commodity markets.
- Derived using the Vorst (1992) Approximation.
 - Accurate to less than a 1%
 - See paper for derivation
- Two versions
 - Averaging not yet started $C_{t=0}$ i.e. project has yet to start
 - Averaging started i.e. project now incorporates "learning" into $C_{t>0}$

Application (Steps)

- 1) Characterize the underlying volatility and price drift of the developmental BOM at t=0 ($\sigma = 7\%$ and $\mu = +0.4\%$) using equations [1] and [2].
- 2) Set the option strike price S as $BOM_{d.}$
- 3) Calculate the hedging premium C_t using equation [11].
- 4) Calculate the extrinsic (or time) value of the option premium C_t .
- 5) Subtract the extrinsic hedging cost C_t from BOM_{d} to get a new target BOM_{s} .
- 6) Repeat monthly using equation [12].
- 7) Adjust the target BOM_s on a monthly basis to take account of changes in BOM_d or C_t .
- 8) At t = 5 the project team must make a GO/NO GO decision as to whether to proceed to the tooling and manufacturing preparation stage.

Application (Decisions)

- a) $BOM < BOM_s < BOM_d \Rightarrow$ decision is GO.
- b) $BOM > BOM_d > BOM_s \Rightarrow$ decision is NO GO.
- c) $BOM_d \le BOM \le BOM_s \Longrightarrow$ decision is NO GO.

Deterministic BOM Approach	@t=0	@t=0	@t=0	Stochastic BOM Approach	@t=0	@t=0	@t=0
Selling Price \$	4200	4200	4200	Selling Price \$	4200	4200	4200
Deterministic BOM Target BOM _d	2594	2594	2594	Deterministic BOM Target BOM _d	2594	2594	2594
Actual Bom Cost BOM _a	2400	2590	2700	Extrinsic Asian Option Cost C _t	20	90	54
				Stochastic BOM Target BOM _s	2574	2504	2540
				Actual Bom Cost BOM _a	2400	2590	2700
	@t=5	@t=5	@t=5		@t=5	@t=5	@t=5
Actual Bom Cost BOM _a	2400	2590	2700	Actual Bom Cost BOM _a	2400	2590	2700
Investment Committee Decision	GO	GO	NOGO	Investment Committee Decision	GO	NOGO	NOGO

 C_t using Equation 11 where BOM_d = S = 2594, BOM_a as assumed, N=48, Averaging Period = h = 1/12, Period T = 4 years, r= μ =0.4%, σ =7%,

σ, μ estimated using Equations 1, 2 on a notional BOM (Appendix 1), an assumed Selling Price of 4200 and deterministic BOM_d target of 2594

Application (3)

- 7) Repeat the calculations 1) to 6) each month at t= 1, 2, 3, 4 and 5 as new information is collected and changes are made to the developmental BOM, volatility etc. using equation [12]. The use of this equation implies that gains or losses in previous months will be averaged out i.e. the option takes account of any project learning achieved.
- 8) Adjust the target BOM_s on a monthly basis to take account of changes in BOM_d or C_t .
- 9) At t = 5 the project team must make a GO/NOGO decision as to whether to proceed to the tooling and manufacturing preparation stage.
- a) The current and expected developmental BOM cost is below the stochastic BOM target BOM_s in which case the decision is GO.
- b) The current and expected developmental BOM cost is above the deterministic BOM target BOM_d in which case the decision is NOGO.
- The current and expected developmental BOM cost is between the stochastic BOM target BOM_s and the deterministic BOM target BOM_d in which case the decision (either GO/NOGO) should strictly speaking be NOGO.

Conclusions

- The expanded stochastic TCP method should in theory
 - Reject those NPD projects which are expensive to hedge.
 - Involve the exploitation phase at an earlier stage in the project.
 - Force the exploitation phase to value and reinsure the hedging option.
- The theoretical support for this method are based on well accepted approaches in both the NPD and Financial Markets.
- Empirical application over time would be needed to demonstrate whether it reduces the number of exploited NPD products that deliver sub optimal financial contributions.

References

- Cooper, R. & Slagmulder, R. (2002), Target Costing for New Product Development: Component Level Target Costing, *Cost Management* Sep/Oct 2002. Vol. 16, Iss. 5, 36-43.
- Vorst, T. (1992), Prices and Hedge Ratios of Average Exchange Rate Options, International Review of Financial Analysis 1, 179-193.
- Nagali, V. (2005) Procurement Risk Management (PRM) at Hewlett Packard Company, from <u>http://cscmp.org/downloads/public/resources/HPProcurement.pdf</u>

Appendix 1: A Stylised NPD Project

Metropolitan University

- We assume a total product life cycle N of 48 months consisting of •
 - a) 1 month Feasibility Stage (t=0)
 - b) 4 months Design Stage (t=1...4)
 - 7 Months Tooling and Manufacturing Preparation Stage (t=5...11) c)
 - d) 36 months Manufacturing Stage (t=12...48)
- Expected selling price of \$4200, •
- Constant phased sales projection over 36 months and a minimum expected net margin of 5%. •
- Minimum required target cost price (TCP) is therefore \$3990. ٠
- Assuming direct labour costs, indirect overheads and investment costs of 35% this implies •
- A maximum allowable developmental BOM_d cost of \$2594. •

Manchester Metropolitan University

- Price series 1) to 4) were taken monthly from January 2000 to August 2007 (92 observations)
- Dow Jones US Semiconductor Index/S&P 500 Metals & Mining Index/S&P 500 Paper & Forest Index/Taiwan SE Plastics and Chemicals Index
- We calculate the continuously compounded returns $(Ln[P_{i,t}] Ln[P_{i,t-1}])$ of the relevant P series for i =1...4, and their sample drift μ and variance σ are then estimated below.

	(1)	(2)	(3)	(4)
	Elec.	Metal	Pack.	Plastics
Sample µ	-0.0064	0.0098	0.0001	0.0045
Std. Dev.	0.1280	0.0760	0.0735	0.0889
Skewness	-0.5600	-0.3250	-0.3013	-0.3286
Kurtosis	4.0018	2.8567	3.9020	4.9641

Summary Table of BOM Component Characteristics

Calculation of BOM value $B_{A.0,t=0}~$ and $~\sigma$ using Equations (1) and (2)

	Electronics	Metal	Packaging	Plastics	Total
Using Equation(1)					
Amount (A)	0.5	5	1	4.5	
Cost/Amount (P)	1347	242	141	212	
Initial Cost (A*P)	673	1212	141	955	2982
% Weighting	23%	41%	5%	32%	
Sample µ	-0.0064	0.0098	0.0001	0.0045	0.40%
Using Equation (2)					
Electronics	0.000826	0.000424	0.000036	0.000212	0.001498
Metal	0.000424	0.000945	0.000069	0.000260	0.001698
Packaging	0.000036	0.000069	0.000012	0.000026	0.000143
Plastics	0.000212	0.000260	0.000026	0.000803	0.001300
				Variance	0.00463941
				Volatility σ	7%