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ABSTRACT 

ABSTRACT 

This thesis investigates a scheduling algorithm for a heterarchical, distributed 

manufacturing system.  Scheduling in a heterarchical, distributed system is a challenge 

as the algorithm must be able to operate in the absence of a coordinator and global 

information.  A distributed scheduling method using a market based scheduling 

algorithm is investigated.  Not only is this algorithm able to operate in the absence of a 

coordinator and global information, it also provides a good match between the software 

processing parts and the actual physical entities in a manufacturing system.  In addition, 

each entity in the system is able to retain its private information. 

 

It is found, using simulations, that the market based scheduling algorithm is able to give 

close-to-optimum solutions.  There are instances when the algorithm does not perform 

well.  The lower bound of the algorithm’s performance is derived and conditions under 

which the algorithm does not perform well are investigated. 

 

The market based scheduling algorithm is successfully implemented in the Cambridge 

Auto-ID Lab, an HMS testbed.  Modifications are made to the original algorithm so that 

it can cope with the dynamics of the real time system and handle rush orders.  It is shown 

in simulations and in a physical system that the algorithm is able to perform real time 

rescheduling, handle rush orders and produce good scheduling solutions according to 

some performance measures. 
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CHAPTER 1   INTRODUCTION 

CHAPTER 1 INTRODUCTION 

1.1 Overview 

This research investigates a scheduling algorithm for a heterarchical, distributed 

manufacturing system.  In a manufacturing system with resources and jobs to be serviced 

by these resources, scheduling is to allocate the resources to the jobs.  Scheduling in a 

heterarchical, distributed system is a challenge as the algorithm must be able to operate 

in the absence of a coordinator and global information.  In this thesis, a market based 

scheduling algorithm (MBSA) based on the work by Wellman [6] is investigated.  Not 

only is this algorithm able to operate in the absence of a coordinator and global 

information, it also provides a good match between the software processing parts and the 

actual physical entities in a manufacturing system.  In addition, each entity in the system 

is able to retain its private information. 

 

In the first stage of this research, the performance the MBSA is studied.  It is found that 

the MBSA is able to give close-to-optimum solutions.  A bound of the algorithm’s 

performance and conditions under which the algorithm does not perform well are 

derived.  These analyses help manufacturing factories in designing the scheduling 

parameters when using the MBSA. 

 

In the second stage of this research, the implementation issues of the MBSA in a holonic 

manufacturing system (HMS) ([17]) are studied.  Modifications to the algorithm are 

proposed so that it can operate in a dynamic system and handle rush orders.  It is shown 

from simulations and implementation of the algorithm in the Cambridge Auto-ID Lab 

that the MBSA is able to meet these requirements. 
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1.2 Research Objectives 

Parunak pointed out that any successful application of a technology must reconcile two 

perspectives, which are to focus on a particular capability and to demonstrate how this 

capability can be used in practical problems [32].  In this research, both the theoretical 

aspects and the practical aspects of the MBSA are investigated.  The objectives of this 

proposed research are: 

1. To investigate the behaviour of the MBSA. 

2. To study the implementation issues of the MBSA in a real time HMS. 

 

With these objectives, this research sought to answer the following questions: 

1. What is the performance of the MBSA under various scheduling conditions? 

2. What are the instances when the MBSA performs badly and the reasons it does 

not perform well? 

3. What is the bound of the performance of the MBSA? 

4. What are the issues or difficulties in implementing the MBSA in a real time 

HMS? 

5. What modifications are required for the MBSA to operate in a real time HMS? 

6. Is the MBSA able to operate in a real time HMS after these modifications? 

 

1.3 Research Methodology 

A methodology is developed to achieve the objectives and to answer the research 

questions.  This research is divided into two phases: 
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1.3.1 Software Simulations and Mathematical Analysis 

The first phase attempts to achieve the first objective and to answer the first three 

research questions.  In this phase, the following are done: 

1. The MBSA is simulated under various scheduling conditions and its 

performance is studied. 

2. The bound of the performance of the MBSA is derived. 

3. Conditions under which the MBSA does not perform well are investigated. 

 

1.3.2 Implementation of the Market Based Scheduling 
Algorithm in a Real Time Holonic Manufacturing 
System 

The second phase of the research attempts to achieve the second objective and to answer 

the last three research questions.  The implementation issues of the MBSA in a real time 

HMS are investigated.  In the literatures, Kumar discussed an application for auctioning 

over the Internet [30].  University of Michigan designed an auction server, Michigan 

Internet AuctionBot, for testing electronics auctions [31].  Both of these works 

highlighted a few issues (for example, information delay, interactions between the 

auctioneers and the bidders) in implementing auctions in distributed, electronic systems.  

Attentions are paid to these issues when implementing the MSBA. 

 

1.3.2.1 Implementation of the Market Based Scheduling Algorithm in a 
Simulated Lab Environment 

Firstly, the MBSA is implemented in a simulated lab environment.  This stage is 

included prior to the implementation of the algorithm in a physical system as it is 
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anticipated that many issues might arise in the implementation stage.  The reasons for 

simulations are: 

1. It is easier to manage a simulation than a physical system.  It takes less time to 

reset the experiment setup for repetitive experiments. 

2. The speed of objects’ movement and manufacturing processes can be scaled 

easily.  This speeds up the experiment. 

3. Hardware issues and software issues (the scheduling software program) can be 

easily separated.  This makes debugging of the scheduling program easier. 

 

1.3.2.2 Implementation of the Market Based Scheduling Algorithm in 
Cambridge Auto-ID Lab 

Secondly, the MBSA is implemented in Cambridge Auto-ID Lab, which implements an 

HMS.  The aim in this stage is to investigate implementation issues which are not 

encountered in the simulations and to verify the results obtain in simulations. 
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1.4 Organisation of this Thesis 

Introduction 

Background 

The market based scheduling algorithm

Problem Domain 

Theoretical

Performance 
analysis

Implementation 
issues and results 

Practical

Conclusion and recommendations for 
future research

 
Figure 1. Organisation of this thesis. 

 

This thesis is organised as depicted in Figure 1.  Chapter 2 gives brief introductions to 

multi-agent systems (MASs), HMSs, scheduling and auctions.  Chapter 3 gives a detail 

description of the MBSA.  As the algorithm uses an auction as the scheduling 

mechanism, different bidding strategies could be employed by the bidders.  Two bidding 

strategies used in this research are introduced at the end of this chapter.  Chapter 4 lays 

down the problem domain of this research.  The type of scheduling considered in this 

research is presented.  Chapter 5 and Chapter 6 scrutinise the MBSA by using 

simulations and analyses.  The former chapter looks at how different scheduling 

conditions affect the performance of the algorithm.  The latter chapter presents the 

analysis of the bound of the algorithm’s performance and derivations of the conditions 

under which the algorithm produces suboptimum solutions.  Chapter 7 presents the 
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results of implementing of the MBSA in a simulated environment and a real time HMS.  

A few issues of implementing the algorithm in a real time, dynamic manufacturing 

system are highlighted.  The final chapter presents our original contributions in this 

research, reiterates important findings and gives recommendations for future research. 

 

1.5 Contributions 

Our original contributions in this research are: 

1. We compared the performance of the MBSA under various scheduling 

conditions. 

2. We derived the bound on the performance of the MBSA. 

3. We investigated conditions under which the MBSA always produces optimum 

solutions. 

4. We proposed modifications to the MBSA for it to operate in a dynamic 

manufacturing system. 

5. We successfully implemented the MBSA in a HMS. 
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CHAPTER 2 BACKGROUND 

This chapter gives a brief introduction to MASs, HMSs, scheduling and auctions.  We 

describe the relationship and the differences between an MAS and an HMS.  We then 

discuss the characteristics of a heterarchical HMS and the challenge faced by scheduling 

in a heterarchical HMS.  Various scheduling techniques are then surveyed and their pros 

and cons are presented.  This chapter wraps up with a brief introduction to auctions, 

which form the basis mechanism of the MBSA. 

 

2.1 Multi-Agent Systems 

Since 1980s, MASs have grown into one of the most active areas of research and 

development in computing [25].  In an MAS, agents are situated in an environment and 

they are able to “see” the environment through sensors and can possibly change the 

environment through their actions.  The agents are autonomous that they are capable of 

making decisions based on their knowledge about the environment and/or other agents 

without the intervention of other agents.  The agents exhibit social behaviour, whereby 

they interact with other agents in order to achieve their goals.  This section discusses 

three different types of agent architectures.  The advantages and disadvantages of each 

type of agent are summarised.  This is followed by looking at how, in an MAS, the 

agents can reach agreements.  Particular attention is paid to the auction-based negotiation 

among agents. 
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2.1.1 Types of Agents 

Wooldridge [13] categorised agents into three categories: deductive reasoning agents, 

practical reasoning agents and reactive agents.  Deductive reasoning agents and practical 

reasoning agents use symbolic representations to represent the environment, the agents’ 

beliefs, desires and intentions.  In contrast, the reactive agents do not use symbolic 

representations. 

 

A deductive reasoning agent gets information about the environment through its sensors 

and translates it to symbolic descriptions, which define its state.  It scans through a set of 

deductive logical rules (For example “ ζαα DOTHENANDIF 21 ... ”, where 

{ ...,2,1, =ii }α  are symbolic descriptions and ζ  is an action) and select an action in a 

deductive rule which the antecedents ( iα ) match its state.  One disadvantage of the 

deductive reasoning approach is that the environment may change when the agent scans 

through the logical deductive rules for an appropriate action as well as during the action 

itself.  Also, the search for an action may take a long time. 

 

Instead of following deductive rules, a practical reasoning agent determines what it 

wants to do (deliberation) and decides how to do it (means-ends reasoning).  From the 

agent’s beliefs about the environment (again, updated through its sensor) and previous 

intentions, it generates a set of intentions.  It then works out a plan (a sequence of 

actions) to achieve its intentions.  As the search over all possible sequence of actions 

may be computationally extensive, a plan library is usually available.  The library 

consists of pre-computed plans which map the current states of an agent to the states 

after a sequence of actions. 
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Both deductive reasoning agent and practical reasoning agent use symbolic 

representations of the physical environment, the agent’s beliefs, intentions and desires.  

However, Wooldridge pointed out that it may not be obvious how the mapping between 

the physical environment and the symbolic representation may be realised [13].  A 

reactive agent does not use any complex symbolic representation or symbolic reasoning.  

It simply maps what it senses to an action.  The architecture of reactive agents is simple.  

But, the disadvantages are that the decision making process is made using local 

information and that it may be difficult to build reactive agents such that a desired 

overall behaviour can be guaranteed by the interactions among individual agents and the 

environment. 

 

For simple bidding strategies and bid evaluations in the MBSA, an MAS with reactive 

agents is a good choice as its architecture is simple and there is no complex symbolic 

representation required in a bidding system.  Furthermore, with the lack of a coordinator 

and global information in a heterarchical, distributed system, an agent only uses local 

information to determine its actions. 

 

2.1.2 Agent Negotiations 

After describing different types of agents, we now look at how agents interact with one 

another.  Kraus [26] presented six techniques for reaching agreements in an MAS: 

strategic negotiation, auction, coalition formation, market-oriented programming, 

contracting and logical argumentation.  We briefly describe these negotiation methods 

and their suitability to be implemented in a manufacturing environment, particularly in 

scheduling. 
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In the strategic negotiation model, every agent takes turn to make an offer (a possible 

agreement).  If all agents accept the offer, the negotiation terminates and the offer is 

implemented.  A conflict results if one or more agents opt out and the negotiation ends.  

Otherwise, if not all agents agree on that offer but no agent opts out, the negotiation 

continues with the next agent proposing a counteroffer.  The strategy of each agent must 

be designed such that its offer is better for any agent than to opt out.  The strategic 

negotiation model provides a solution to a wide range of problems [26].  Jennings [27] 

pointed out a few problems in the strategic negotiation model.  In a multi-issue case, it 

may be difficult to define the agent’s preferences over outcomes.  The search for 

mutually acceptable solutions may be computationally time consuming.  Furthermore, in 

order to find these solutions, an agent needs information of other agents.  This may not 

be possible when the agents are competing. 

 

McAfee [15] defined an auction as “a market institution with an explicit set of rules 

determining resource allocation and prices on the basis of bids from the market 

participants”.  One attraction of using auction to reach agreements is its simplicity in the 

interactions among agents.  Auctions are described in greater detail in Section 2.4 on 

page 23. 

 

Market-oriented programming is an approach based on market price mechanism [29].  In 

WALRAS, a market-oriented programming environment developed by Wellman [28], 

there are two types of agents.  The consumer agent can buy, sell or consume goods.  The 

producer agent transforms one type of goods into another.  Each agent gives its quantity 

(demand or supply) vs. price curve to an auctioneer.  The auctioneer determines the 

market price for each good.  The competitive equilibrium is reached when the excess 

demand in the market approaches zero.  However Wellman pointed out that system 
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equilibrium or optimum solution may not be achieved without a central control.  Auction 

can be classified as a special case of market-oriented programming. 

 

Cooperation can be achieved by forming coalitions.  An agent will join a coalition if it 

gains more from joining than not.  This is useful in distributing jobs among agents.  But 

in a manufacturing environment where agents are fighting for resources, it begs the 

question of how the resources can be allocated.  Other negotiation techniques will have 

to be employed to solve the problem. 

 

In contracting, an agent convinces other agents to help it with its job by giving them 

rewards.  This method is useful in job decomposition.  Contracting is often used in a 

factory operation cell, where machines contract out their operations to individual tools, 

for example drilling, clamping, and milling.  After a factory schedule is made, each 

machine can use this negotiation technique to communicate with its sub-parts to perform 

a job. 

 

Logical argumentation is usually used in symbolic-based agent architecture.  In this 

model, an agent tries to influence the intentions of other agents.  During the negotiations 

among agents, each agent receives messages from other agents and updates its beliefs 

and intentions.  This can be employed in an auction if the agents have information about 

other agents.  When an agent knows that both itself and another agent can be better off 

by exchanging their resources, it can persuade the agent to do so. 

 

In the next section, we will discuss HMSs, which have useful parallels to MASs. 
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2.2 Holonic Manufacturing Systems 

2.2.1 What is a Holonic System? 

The concept of holonic system was proposed by Arthur Koestler.  The word “holon” 

comes from the Greek word “holos”, which means whole and the suffix “on” which 

suggests a particle.  He observed that living organisms and social organisations are made 

up of sub-wholes or parts which are themselves self-contained wholes to their sub-parts.  

The Holonic Manufacturing Systems Consortium translated the concept of holons to the 

concept for the manufacturing arena.  The goal is to achieve the benefits that a holonic 

system provides to living organisms and societies to the manufacturing industries [34]. 

 

In an HMS, a holarchy refers to a system of holons interacting in a cooperative manner 

to achieve certain goals.  Holons are autonomous and cooperative building blocks in the 

HMS.  A holon consists of an information component and often also a physical 

component.  Examples of the physical components are products, and machines.  The 

information processing part makes decisions, manages the physical components and 

interacts with other holons. 

 

Chirn and McFarlane surveyed a few proposed system architectures for the HMS [17].  

One of them that received much attention is MAS.  This is due to the fact that an agent is 

autonomous and proactive, which is consistent with the concept of a holon that is 

autonomous and cooperative.  The cooperative nature of the agents can be realised by 

proper design of rules that govern the agents.  The difference between HMS and MAS is 

that the former is an organizing principle for structuring and controlling manufacturing; 

while the latter is a software technology that realizes the information processing of the 

HMS [39]. 
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2.2.2 Why a Holonic Manufacturing System? 

An HMS has the following characteristics which make it an attractive solution for 

manufacturing companies (some of them are taken from [40]) 

1. A distributed system is possible where decisions are made locally.  A 

distributed system is more tolerant to single point failures. 

2. Plug-n-play capability.  New components can be added easily to the existing 

system. 

3. An HMS is resistant to disturbance.  This is one advantage of a distributed 

system over a centralised system. 

4. An HMS is re-configurable and flexible.  In a conventional manufacturing 

approach, the system is often configured and optimised for a specific product 

type.  Whenever a product needs modification, re-configuration of a system 

requires extensive effort.  In an HMS, a machine represents a capability and is 

not configured for a fixed product type.  Any change in the product design only 

requires different interactions between the product holons and the machine 

holons. 

5. Complex structures can be configured via aggregation of lower level unit 

operations.  This simplifies the system design, trouble shooting, future 

modifications and upgrades. 

 

2.2.3 Hierarchical vs. Heterarchical System 

In this section, we discuss the differences between a hierarchical system and a 

heterarchical system.  Attentions are paid to the types of communications among agents 

and the use of global information. 
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Figure 2. An example of a hierarchical system. 

 

In a hierarchical system, each agent represents a function capability [33].  There exists a 

master-slave relationship among the agents.  A master agent requests a slave agent to 

perform certain jobs and expects specific results.  An example is given in Figure 2.  The 

jobs send their request to the schedule agent while the schedule agent requests 

information from the planning agent.  The planning agent decomposes jobs into sequence 

of operations and determines the types of resource required for each operation.  It has the 

information of all resource types in the system.  The scheduling agent produces a 

schedule that defines timing specifications for each operation.  It holds the schedule of 

the entire system. 

 

 
Figure 3. An example of a heterarchical system. 

Scheduling agent 

Resource Resource Job Job 

Schedule 

Performance 
feedback

Request for 
resource 

Schedule 

Planning agent 
Resource type 

control 
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On the other hand, in a heterarchical architecture, agents communicate as peers.  There is 

no master-slave relationship.  Though there are rules defining the agent negotiations, one 

agent does not have the power to dictate another agent.  No global information is kept 

anywhere.  An example of a heterarchical system is depicted in Figure 3.  Here jobs 

negotiate with resources to use their service; a resource may request the service of 

another resource.  Each job and each resource keeps its own schedule and there is no 

agent that holds the overall schedule. 

 

The heterarchical architecture is inherently capable of self-configuration, scalability, 

fault tolerance and emergent behaviour [33].  In the hierarchical architecture, the agents 

in the lower layer may not work properly if the agents at the higher level fail.  In a 

heterarchical system, if some of the agents are destroyed, the remaining agents continue 

to function, since control is distributed.  A coordinated activity and decision (for 

example, how much to produce) emerges from many local decisions (for example, the 

schedule at individual machines).  McEleney argues that the distributed approach lowers 

the complexity of a system by concurrent local decision making, avoiding a single but 

complex coordination of the whole system [36]. 
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Schedule for machine A

 
Figure 4. A scheduling problem with two resources and four jobs. 

 

However, the heterarchical system lacks higher level agents that oversee the entire 

system.  As a result, higher level coordination may not be trivial.  The lack of central 

control and global information poses a great challenge to scheduling in a heterarchical 

system.  An example is given in Figure 4 where two new jobs arrive and both try to get a 

processing slot from machine 0.  Machine 0 accepts the request from new job 0, which 

has higher priority.  We see that in this case, new job 1 cannot be scheduled.  As opposed 

to a heterarchical system, in a hierarchical system where both the schedules for machine 

0 and machine 1 are available to a higher level (scheduling) agent, it can schedule new 

job 0 to machine 1 and new job 1 to machine 0, so that both jobs can be processed. 

 

2.2.4 Scheduling Requirements in a Heterarchical Holonic 
System 

Due to the lack of central control, a heterarchical system needs a scheduling algorithm 

with the following characteristics.  In the following list, 1 to 3 are requirements, while 4 

to 7 are desirable properties. 

Machine 0 

Machine 1 

time

time

New job 0

Job Job 

New job 1 

Schedule for machine B

Job Job Job 

request 
request reject 

accept 

higher priority lower priority 

 16



CHAPTER 2   BACKGROUND 

1. The algorithm must be distributed.  In a heterarchical system, there is no single 

agent that performs scheduling.  Scheduling is carried out over a number of 

processors that are able to communicate with each other.  However, to date, 

most holonic scheduling approaches are centralised to some degree [18].  

Usually a coordinator is required to guarantee certain performance level of the 

whole system. 

2. The algorithm must be able to cope with the absence of global information. 

3. The algorithm must be able to operate in a dynamic system.  This characteristic 

is not just pertaining to heterarchical system but to manufacturing systems in 

general.  In a manufacturing environment, jobs arrive randomly.  The algorithm 

must be able to update its schedule when new jobs arrive. 

4. The algorithm is scalable.  In a distributed system, information processing is 

done at various distributed processors.  It is desirable that as the system gets 

larger (for example, when the number of machines or the number of jobs 

increases), the information processing load is shared evenly among processors. 

5. The algorithm can handle rush order.  A rush order is an order that has high 

priority and comes late. 

6. Each information processing unit in the distributed scheduling mechanism has 

their corresponding physical entities.  This is desirable as the processing load is 

automatically distributed when a new job arrives or a new resource is installed.  

In addition, physical correspondence is consistent with the concept of holonic 

system. 

7. Each job and resource can retain its private information.  This is a desirable 

property, for example when the jobs are from different companies that are self-

interested and competing among each other, they may not want to reveal their 

private information to other companies. 
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2.3 Scheduling 

2.3.1 What is Scheduling? 

The theory of scheduling spans several disciplines from the industrial research to the 

academic research in Operational Research, Manufacturing, Computer Science, 

Electrical Engineering, Communications, and Applied Mathematics.  Scheduling is the 

process of allocating a set of resources to different jobs.  In the context of this thesis, 

only job shop scheduling is considered.  Johnson defines job shop scheduling as “… 

determining the order or sequence in which the machines will process the jobs so as to 

optimise some measures of performance.” [10]. 

 

2.3.2 Distributed Techniques vs. Distributed Problems 
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Figure 5. A matrix showing centralised/distributed techniques for problem solving and 
centralised/distributed problems. 

 

Ferber made a clear distinction between a distributed technique for problem solving and 

a distributed problem [2].  A distributed technique for problem solving refers to the case 

where a problem is solved by using different processors, each performing some 
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computations and communicating with each other (refer to sectors B and D in Figure 5).  

Independent of the technique used, the problem domain may be distributed or 

centralised.  A distributed problem refers to a system which is made up of entities 

interacting with each other while each of them requires its own processing (refer to 

sectors C and D in Figure 5).  For example monitoring of energy or telecommunications 

network where each node in the network is physically distributed.  Each node needs local 

supervision.  In an HMS where the manufacturing entities, for example machines, 

products, and orders, are autonomous, the scheduling problem domain is also distributed. 

 

2.3.3 Currently Used Scheduling Algorithms 

Traditionally, research into scheduling focused on minimising the schedule length or the 

mean flow time [9].  Mean flow time is the average time taken from the start of the 

schedule to the time a job is completed.  The techniques used are centralised.  However, 

centralised manufacturing scheduling and control mechanisms are found to be vulnerable 

to single point failures [5].  In addition, traditional scheduling techniques assume a static 

environment, whereby all necessary information is known beforehand [4].  Real time 

scheduling in manufacturing is inherently dynamic as orders arrive at different times.  

Also, disturbances such as machine breakdowns may happen.  Thus a scheduling 

algorithm that is able to handle a dynamic environment and disturbances is desired. 

 

While centralised algorithm is a sensible one to be used in a centralised domain, many 

distributed systems also use centralised algorithms.  This is because centralised 

scheduling has being well studied and there are many algorithms that can be applied for 

different system requirements.  Bussmann [4] proposed a multi-agent approach using a 

centralised scheduling technique for HMS, whereby the schedules of transporters 

(machines that move products from a point to another) are determined by a coordinator.  
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When new orders arrive, the coordinator announces jobs to the transporters.  The 

transporters send their capabilities to the coordinator, telling if they are able to handle the 

jobs.  The coordinator searches for an assignment that can cover the maximum number 

of jobs.  Here a centralised scheduling technique is used where the search is done solely 

by the coordinator.  Bussmann pointed out that a totally distributed approach is not 

appropriate.  He claims that a central component is required to globally optimise a 

schedule. 

 

Kis [37] used a centralised scheduling algorithm in a distributed manufacturing system 

employing the market based mechanism.  The first price sealed bid auction is used.  Here 

a management agent is used to coordinate the schedule.  It received orders from different 

companies and accepts a number of them.  It then announces new jobs to machines and 

the machines submit bids to the management agent.  The management agent produces a 

schedule by assigning jobs to machines with the highest bids. 

 

Lin and Solberg [38] proposed a distributed scheduling algorithm for a distributed 

system, that uses a bidding mechanism.  In their model, orders that arrive at the system 

announce their jobs to the machines.  The machines submit bids to the orders; the orders 

evaluate and select machines with the best bids.  This distributed approach is scalable 

and it has a good mapping between the information processing parts and the physical 

entities.  However, it is not clear how high priority order differentiates itself from the 

others.  Also, a job is committed when an order accepts the best bid from a machine. 

 

Gozzi [19] proposed a distributed scheduling technique via agent negotiations using a 

heuristic approach.  In the proposed architecture, every job calculates its best starting 

time to be processed and sends its proposal to various machines with a bid price.  The 
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machines either reject, accept or offer counter proposals to the jobs.  However, this 

scheduling technique does not assign priorities to the jobs.  Also, its ability to cope with 

rush orders is not documented. 

 

Gou [35] investigated a distributed scheduling algorithm in an HMS using Lagrangian 

relaxation method.  It decomposes the scheduling problem into sub-problems.  Each sub-

problem finds the schedule for one job.  A schedule is produced after many iterations.  In 

each iteration, a central coordinator works out the Lagrangian multipliers for each sub-

problem.  With these multipliers, the machines find the best starting time for each job by 

solving the sub-problems.  With the new updated job starting times, the central 

coordinator works out new Lagrangian multipliers.  This process is repeated until the 

algorithm converges after a certain number of iterations.  The advantage of using the 

Lagrangian relaxation method is that it guarantees a near-optimum solution [33].  Also, 

the algorithm can be mapped into an HMS.  However, this algorithm does not prioritise 

jobs.  It may suffer scalability problem because the machines are responsible for solving 

the sub-problems.  So when the number of jobs increases, the machines will be loaded. 

 

Other researches on scheduling in HMSs include McEleney [36] who investigated a 

centralised algorithm and Xiao Qin who looked at a dynamic, fault-tolerant scheduling 

for heterogeneous distributed systems ([23], [24]).  Many researches in distributed 

manufacturing scheduling have looked into the system architectures, in which auctions 

were briefly mentioned to be used for scheduling and planning ([4], [7]). 
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2.3.4 Advantages and Disadvantages of the Distributed 
Scheduling Algorithm 

The centralised scheduling technique has a few limitations: 

1. The centralised scheduling technique assumes that all information required to 

carry out the scheduling is available at a processor in which calculations are 

performed [1]. 

2. The centralised scheduling technique is not desirable in a heterarchical system 

where it is difficult to obtain a totally centralised overall view.  As the system 

gets larger, controlling and monitoring of individual nodes gets more 

complicated. 

3. In a distributed environment without central control, it is not easy to determine 

which processor is responsible for the information processing for scheduling. 

4. The centralised technique in a distributed system assumes distributed 

information with cooperative behaviour [1].  A centralised approach may be 

difficult if individual parts are not cooperating. 

 

Besides overcoming the limitations faced by the centralised approach, the distributed 

approach has the following advantages: 

1. It is more economical to process information in a large number of central 

processing units (CPUs) than one single mainframe computer. The computing 

power of a CPU is proportional to the square root of its price. This is known as 

the Grosch's law [11]. 

2. The distributed technique is more reliable.  If one computer crashes, scheduling 

may still continue if information processing runs on separate processors [12]. 
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However, the distributed approach has a few disadvantages: 

1. Extra processing load is incurred as message passing is required among 

distributed nodes for coordination. 

2. Performance of the system may be affected by the communication links 

between nodes.  For example, the throughput of an auction deteriorates quickly 

when the number of parts increases to about fifty [20]. 

3. While the distributed approach is designed to cope with disturbances, there is, 

in general, a trade-off between its performance and the reactivity of the system 

to disturbances [3]. 

4. Myopic decision may occur due to the lack of global information [38]. 

 

2.4 Auctions 

In this section, we discuss different types of auctions and different bidding strategies that 

the bidders can employ in an auction.  Auction is the basis of the MSBA, which is the 

scheduling algorithm that we investigate in this thesis. 

 

2.4.1 Types of Auctions 

Four basic types of auctions are: the English auction, the Dutch auction, the first-price 

sealed-bid auction, and the second-price sealed-bid (or Vickrey) auction [15]. 

 

In the English auction, the price of goods is successively raised until one bidder remains.  

In the Dutch auction, a high initial price is called.  The price is lowered until a bidder 

accepts the price.  In the first-price sealed-bid auction and the second-price sealed-bid 

auction, the bidders submit their bids and the highest bidder gets the goods.  The 

difference between the first-price seal-bid and the second-price sealed-bid is that in the 
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former the winner pays the price it bids but in the latter the winner pays the price of the 

second highest bid. 

 

Table 1 gives a summary of these four types of auction.  In an open-cry auction, each 

bidder can see at what price other bidders bid.  In the closed-cry auction, the bidders 

submit their bids to the auctioneer.  A bidder does not know the bidding prices of other 

bidders. 

 

Table 1. Comparison between different auctions. 

Auction Auction type 
Open-cry / 

closed-cry? 

How does the 

price change? 

What price does 

the winner pay? 

English auction Ascending-bid Open-cry 
Increases in each 

round of bidding 

Bid price of the 

highest bidder 

Dutch auction 
Descending 

bid 
Open-cry 

Decreases in each 

round 

Bid price of the 

highest bidder 

First-price 

sealed-bid 

auction 

Sealed bid Closed-cry 

Auction closes 

after the first 

round of bidding 

Bid price of the 

highest bidder 

Second-price 

sealed-bid 

auction 

Sealed bid Closed-cry 

Auction closes 

after the first 

round of bidding 

Bid price of the 

second highest 

bidder 

 

Other auctions variants include continuous double auctions (CDA) [42] and 

combinatorial auctions [41].  CDA are useful when similar and substitutable goods are 

available in a large number.  However, in this thesis, we consider discrete goods that are 

not substitutable.  A scheduling system that uses combinatorial auctions is 

computationally complex [6] and it is often not practical because of the difficulties in 

coordinating the allocation of resources [1]. 
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2.4.2 Bidding Strategies 

In an English auction where the amount of money that each bidder has and its evaluation 

of the goods are kept private, the bidder’s dominant strategy is to bid a small amount 

higher than the current highest bid until the price exceeds its willingness to pay ([8], 

[15]).  However, this strategy does not work well in CDA and combinatorial auctions. 

 

In CDA, a seller needs to acquire information about other sellers and the buyers before 

deciding on the ask price.  On the other hand, a buyer needs to know the ask price and 

the bid price for a particular goods in previous rounds of auctions before submitting its 

bid [21].  For combinatorial auctions, a buyer needs to work out bid values for different 

combinations of items, where some items can compliment or substitute each other. 

 

Anthony and Jennings surveyed various bidding strategies used in different auctions 

[22]: 

1. In the possibility-based approach, a bidder evaluates the possibility of it 

winning the round for a given bid price.  It then selects the most preferred 

decision according to a certain global utility value.  This requires prior 

information, such as the winning prices in previous auctions and the money 

other agents may have. 

2. In the recursive modelling method, a bidder models what other bidders do.  The 

process can be recursive when a bidder models other agent’s model.  The 

modelling ends when the bidder has no deeper knowledge. 

3. Using a negotiation decision function, bidders and sellers negotiate with offers 

and counter offers. 

4. Using the stochastic modelling, a seller or a bidder models the auction process 

using a Markov Chain.  Using the Markov Chain model, the seller or the bidder 
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is able to capture the variables that represent the dynamics of the auctions 

process, for example the number of sellers and buyers, the arrival rates of the 

buyers and the sellers, the distributions of the buying and selling prices. 

 

(1), (2) and (4) require a bidder to monitor the bidding process of other bidders or to 

have the bidding information of other bidders in previous auctions.  For (3), a bidder 

must know which bidder is holding which resources.  A bidder will have difficulties 

using these strategies if it is new to the system and does not have information about other 

bidders.  In this research, we look at the case where a bidder only considers the current 

highest bids for the resources and the money it has when it bids. 

 

In this chapter, we have presented MASs and HMSs which form the architecture of the 

manufacturing system that this research concerns.  We discussed various scheduling 

techniques found in the literature and their pros and cons.  We then introduced auctions, 

which are used by the MBSA as the scheduling mechanism. 
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CHAPTER 3 A MARKET BASED 
SCHEDULING ALGORITHM 

In this research, we investigate the market based scheduling algorithm (MBSA) in a 

distributed, heterarchical manufacturing environment.  The MBSA is based on the model 

developed by Wellman [6].  This algorithm uses an English auction as the “platform” for 

scheduling.  Section 3.1 lists the characteristics of the MBSA that makes it a suitable 

choice for a heterarchical, distributed manufacturing system.  The rest of the chapter 

describes the scheduling model and the scheduling algorithm in detail.  Two bidding 

strategies that a bidder can employ are presented. 

 

3.1 Characteristics of the Market Based 
Scheduling Algorithm 

This scheduling algorithm has the following characteristics, which satisfy the 

requirements for scheduling in a heterarchical system: 

1. The algorithm uses a distributed technique and it can be implemented without 

the presence of a central coordinator. 

2. No global information is required for the algorithm to work. 

3. There is no restriction that the algorithm must be used in a static environment.  

We look at how the algorithm can be used in a dynamic environment. 

4. This algorithm is scalable.  The processing of bidding decisions is done by 

individual bidders.  Hence, the computation load can be distributed when more 

bidders enter the system. 

5. The original algorithm does not document the handling of rush orders.  

However, we adjusted the algorithm such that rush orders can be dealt with. 
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6. There is a mapping between the information processing parts of the algorithm 

and the physical entities in an HMS. 

7. Each bidder can retain its private information, which is the maximum amount 

that it is willing to bid. 

 

3.2 Scheduling Model 

The scheduling problem is to allocate a set of discrete resources to a number of jobs.  In 

an HMS that uses an MAS as the software architecture, each resource and each job 

constitute a holon and an agent is used to control the holon.  In the MBSA proposed by 

Wellman, the job agents bid for the resources by submitting their bids to an auctioneer 

agent.  For the rest of this thesis, we term the job agents as bidders. 

 

We use the following notations in our analyses throughout this thesis. 

{ 110 ...,,, −= NGGGG }

}

 is a set of discrete resources. 

jq  is the reserved price of resource . jG

{ 110 ...,,, −= Npppp  is a set of prices where  is the current price of resource 

.  The price for a resource is the minimum amount that a bidder must bid to 

get the resource. 

jp

jG

There are M  bidders in the system, which we term as bidder 0, bidder 1, …, 

bidder 1−M . 

iX  is the set of resources that bidder  is holding.  . i GX ⊆i

( iiv X )  is the value that bidder  will get when it is holding . i iX

iv  is the value that bidder  will get when it holds all the resources that it needs. i
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f  is a solution of a scheduling problem, which is an allocation of the resources 

to the bidders. 

[ ]110 −= Ni ffff ......f  where { }1...,,1,0,1 −−∈ Mf j  means that the j-th 

resource  is allocated to bidder .  jG jf 1−=jf  means that the j-th resource is 

unallocated. 

{ }1| −== jfjU  is the set of indices of unallocated resources. 

 

Each bidder needs a number of resources to complete its job.  If it holds less than the 

number of required resources, the bidder’s value is zero.  Wellman defines the global 

value of a solution,  as the sum of the values of all bidders and the reserved prices of 

all unallocated resources [6].  This can be written as 

( )fv

       Q 1 ( ) ( )∑∑
−

=∈

+=
1

0

M

i
ii

j
j vqv Xf

U

 

3.3 Scheduling Algorithm 

The scheduling algorithm follows the setting of an English auction.  The auction 

mechanism is as follows: 

1. Each resource is marked with a reserved price.  The price of a resource that has 

not being bid for equals its reserved price. 

2. If a bidder wishes to bid for a resource , it must bid at a price not lower than 

the price . 

jG

jp

3. When the bid price from a bidder is higher or equal to the price of a resource, 

the resource is temporarily allocated to the bidder.  The allocation here is 

temporary as other bidder may outbid the current highest bidder. 
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4. The price of a resource  is increased to jG εβ += jjp  where jβ  is the highest 

bid price up to that time and ε  is the price increment for each bid.  For the rest 

of this thesis, we set 1=ε . 

5. Steps 2, 3 and 4 are repeated until no bidder bids further or after certain amount 

of time. 

When the auction ends, a schedule is formed by allocating each resource to the highest 

bidder. 

 

1 

ε  p0 p1 p2 p3

G0 G1 G2 G3

0 

 
Figure 6. A bidding diagram. 

 

Figure 6 depicts a bidding diagram used throughout this thesis.  It shows the bidding 

process that occurs in an auction.  ε  denotes the price increment after each round of 

bidding.  In the diagram, four discrete resources (indicated by the rectangles) are 

available for bidding, namely , , , and .  At that instance, the prices for the 

resources are , , , and  respectively.  A circle represents a bidder.  The arrow 

represents the bid that a bidder places.  In the example above, bidder 0 bids for . As 

the price of  is currently , bidder 0 must bid at least  if it wants to win the slot.  

The number above a slot represents the index of the bidder winning the slot.  Here,  is 

currently won by bidder 1; bidder 0 is not winning any slot. 

0G 1G 2G 3G

0p 1p 2p 3p

3G

3G 3p 3p

0G
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3.4 Bidding Strategies 

As each bidder is self-interested, they tend to maximise their own surplus.  In other 

words, each bidder will bid for the resource that maximises its value less the price it pays 

for those resources.  The maximum surplus of a bidder i is defined as: 

       Q 2 ( )
{ }⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
′−= ∑

∈∈⊆
ir

i Grj
jiii pvH

XGX
X

|
max

 

Two bidding strategies are investigated in this project.  They are the Straight Forward 

Bidding (SFB) strategy and the Straight Forward Bidding with Sunk Cost Awareness 

(SFBSCA) strategy.  If a bidder uses the SFB strategy, jp′  equals the bid price of bidder 

i if it holds resource ; and equals the current price  (the price that it is going to 

bid) of the resource that it is not holding.  When a bidder uses the SFBSCA strategy, 

jG jp

jp′  

equals the current price  for the resource that it is not holding and zero for the 

resources that it is already holding. 

jp

 

3.4.1 Straight Forward Bidding (SFB) Strategy 

When a bidder uses the SFB strategy, it will bid for some slots if and only if: 

1. It has not won enough resources to complete its job. 

2. The total price of all resources that it bids (resources that it is currently winning 

and resources that it is going to bid) does not exceed its value. 
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To maximise it surplus, a bidder will always bid for the cheapest resources and will only 

bid at the current prices of the resources, which are the prices just enough for it to get 

those resources. 

 

 
Figure 7. An example of a bidder using the SFB strategy. 

 

An example of an auction with bidders using the SFB strategy is depicted in Figure 7. In 

this example bidder 1 has a value of $16 and it needs two resources to complete its job.  

There are four resources for bidding and the prices are $10, $10, $10 and $5.  As seen 

from the diagram, the first and the forth resources are currently won by bidder 0, the 

third resource by bidder 1.  The second resource  is unallocated.  Since bidder 1 needs 

two resources but it is only winning one and it has enough value to bid for , it bids for 

that at a bid price of $5. 

1G

3G

 

3.4.2 Straight Forward Bidding with Sunk Cost Awareness 
Bidding (SFBSCA) Strategy 

When a bidder uses the SFBSCA strategy, it treats the bid price for the resources that it 

is winning as sunk cost.  When it decides whether to bid for another resource, it only 

compares the price for the new resources with its value, disregarding the price of the 

resources that it is winning.  At the first sight, this may sound counter-intuitive.  

However, as mentioned on page 29, the value of a bidder is zero if it cannot complete its 

job (if it does not get enough slots).  In order to minimise its loss, the bidder may bid for 

1 

1=ε  
0 

$10 $10

1 0

$10 $5 
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a slot even if the sum of its current and previous bids exceeds its value (assuming that it 

can complete its job). 

 

 
Figure 8. An example of a bidder using the SFBSCA strategy. 

 

An example is illustrated in Figure 8.  Bidder 1 has $10 and it needs two resources.  If 

bidder 1 uses the SFB strategy, it will stop bidding as it will need $14 to bid for  at $5 

as it is already having  at $9 (the bid price of bidder 1 for  must have been $9, thus 

making the current price to be $10).  However, if bidder 1 uses the SFBSCA strategy, it 

will disregard the amount that it previously placed for  and bid for  as long as its 

value is higher than or equal to the price of .  The rationale behind this is that if 

bidder 1 stops bidding at this point, it will not complete its job.  It will receive zero 

return and it will lose $9 (the price that it pays for ).  However, if it continues to bid 

for , it will get a return of $10 for being able to complete its job and it pays $14 ($9 + 

$5) for both resources.  The net loss is only $14 − $10 = $4, which is lower than the case 

had it used the SFB strategy. 

3G

2G 2G

2G 3G

3G

2G

3G

 

It is show in simulations in Section 5.2 on page 39 and Section 5.3 on page 41 that the 

solutions produced by the MBSA with bidders using the SFBSCA strategy are better 

than that using the SFB strategy. 

1 

1=ε  
0

$10 $10

1 0

$10 $5 
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CHAPTER 4 PROBLEM DOMAIN 

In this research, the resources comprise of machines and tools whereas the jobs comprise 

of products to be processed by the resources.  The scheduling problem is thus to find a 

sequence in which the machines process the products.  This is normally termed job shop 

scheduling.  In this chapter, we first describe a job shop scheduling problem.  We define 

a way to measure how good a solution to the scheduling problem is.  We then present 

how the MBSA can be used in job shop scheduling.  To benchmark the performance of 

the MBSA, we describe another algorithm, which may not be efficient, that can produce 

an optimum schedule. 

 

4.1 System Description 

In this research, a manufacturing environment that consists of a manufacturing factory 

and its customers is considered.  The customers place orders and the manufacturing 

factory provides resources to process the orders.  An order constitutes a job in scheduling 

terminology.  In a real life environment, customers appear to submit orders at random 

intervals.  That is, an order may arrive after an initial schedule is made and a new 

schedule is required.  Each order has a value, which is the profit the customer gets from 

the order, and a deadline.  The value of the order is zero if it is not processed before the 

deadline. 

 

Most researches in job shop scheduling focused on variable length jobs and aimed to 

shorten the job earliness, tardiness or the makespan of the products.  However, little 

attention has been given to job priority.  In this research, fixed length jobs with varying 

priority are considered.  As the jobs are of fixed length, the resources can then be 
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regarded as discrete processing time slots of the machines in a factory.  However, this 

can be generalised to a variable length job problem, in which a job requires one or more 

time slots.  For the rest of this thesis, the term “slot” is used to represent a resource unit 

in the system. 

 

From the manufacturer’s point of view, costs are incurred in providing these resources.  

The costs might come from machine depreciation cost, machine wear and tear, labour 

cost, electricity cost, and machine reconfiguration cost.  Due to changes to these costs 

over time, a manufacturer may set different reserved prices for different slots.  A slot will 

be allocated to an order only if the order is willing to pay a price higher than or equal to 

its reserved price. 

 

4.2 System Performance Evaluation 

A solution to a scheduling problem is defined as an assignment of the slots to the jobs.  

Intuitively, a good solution shall comprise of the following: 

1. In the situation where there are more orders than available slots, not all orders 

can be processed.  A solution that processes orders with higher values is better. 

2. In the situation where there are more slots than orders, not all slots are assigned.  

A solution that assigns the orders to slots with lower reserved prices is better. 

 

In view of these criteria, the global value function defined in Q 1 on page 29 is a suitable 

candidate to be used as the performance measure.  To repeat, the global value is the sum 

of all the reserved priced of unallocated slots and all values of orders that can be 

completed. 
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4.3 Scheduling Approaches 

In this research, two scheduling algorithms are used and compared.  The first algorithm 

is the MBSA described in Chapter 3 on page 27.  The second algorithm is a complete 

search, whose results are used to benchmark the performance of the MBSA. 

 

4.3.1 The Market Based Scheduling Algorithm used in 
Manufacturing 

To implement the MBSA in an HMS, the following mappings are used: 

1. The machines are the auctioneers in auctions. 

2. The orders are the bidders in auctions. 

3. The time slots for machine operations are the resources which the bidders bid 

for. 

 

Each slot has a reserved price.  The orders submit bids to the machines for the slots.  A 

machine accepts a bid if the bid price is equal to or higher than the current price of the 

slot.  When all orders stop bidding, the auction close; the scheduling solution is assigning 

each slot to the order with the highest bid.  In a dynamic system where orders arrive 

randomly, the closing criteria will be modified so that orders that arrive late will be able 

to bid for the slots.  This is discussed in Section 7.1 on page 51. 

 

4.3.2 Complete Search 

To assess the performance of the MBSA, its solutions are compared to the best 

achievable solutions.  A complete search evaluates all possible allocations of slots to 

orders and selects a solution that has the highest global value.  A solution that attains the 
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highest global value is termed as an optimum solution and the corresponding global value 

is called the global optimum value.  It is noted that there might be more than one 

optimum solution but there is only one global optimum value for each scheduling 

problem. 
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CHAPTER 5 PERFORMANCE OF THE 
MARKET BASED ALGORITHM 

In this chapter, the performance of the MBSA under different scheduling conditions is 

investigated.  More specifically, the number of bidders, the number of resources, and the 

bidding strategy are varied. 

 

5.1 Simulations Settings and Procedures 

In each simulation, a set of reserved prices and bidders’ values are first determined.  

Each bidder evaluates the slots to bid for in order to maximise its surplus and submits its 

bids to the auctioneer.  The auctioneer processes the bids in random order.  A bid for a 

slot will be accepted if it is equal to or higher than the current price.  Here the random 

selection simulates the fact that bids arrive at different time in a real time physical 

system.  After the bids are evaluated, the auctioneer notifies the current winner for each 

slot and broadcasts the current price of every slot.  It is noted that the current prices of 

the slots can be either broadcasted or enquired by the bidders.  A bidder bids again if it 

has not got enough slots and it has enough value.  When all bidders stop bidding, the 

global value of the solution is calculated. 

 

The conditions and the parameters used in the simulations in this chapter are listed 

below. 

1. Each bidder requires a number of slots. 

2. If a bidder is able to get enough slots, it will get some value.  If the bidder gets 

less than the required number of slots, it gets zero value. 
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3. Without loss of generality, the reserved prices, the bid prices and the bidders’ 

values assume integer values. 

4. In each simulation run, the reserved price of each slot is randomly generated 

from { }10...,,2,1 . 

5. In each simulation, a bidder’s value is randomly generated from { }, 

where k is the number of slot that the bidder needs. 

k10...,,2,1

 

With the above conditions, the following scenarios are simulated and the results are 

shown in Section 5.2 on page 39 and Section 5.3 on page 41. 

1. There are two bidders, 2=M .  Each bidder requires two slots and each uses the 

SFB strategy.  The number of available slots changes from  to .  

For each value of N, 10000 auctions are simulated.  The reserved prices and the 

bidders’ values are different and randomly generated for each auction. 

2=N 10=N

2. (1) is repeated with bidders using the SFBSCA strategy. 

3. The number of bidders changes from 6to2 == MM .  Each bidder requires 

two slots and each bidder uses the SFB strategy.  The number of available slots 

is kept constant, which is six slots.  For each value of M, 10000 auctions are 

simulated.  The reserved prices and the bidders’ values are randomly generated 

for each auction. 

4. (3) is repeated with bidders using the SFBSCA strategy. 

 

5.2 Performance Comparison with Varying Total 
Available Slots 

The results of simulations (1) and (2) are shown in Figure 9 and Figure 10.  Figure 9 

shows the performance of the MBSA in terms of the global value.  The values are 
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averaged over 10000 simulation samples.  The difference between the global values of 

the solutions produced by the MBSA and the global optimum values is plotted in Figure 

10.  The difference is normalised to the global optimum value. 

 

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10

Total number of slots

A
ve

ra
ge

 g
lo

ba
l v

al
ue

Global optimum
SFBSCA strategy
SFB strategy

 
Figure 9. A graph showing the performance of the MBSA with varying number of slots. 
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Figure 10. A graph showing the difference in the global optimum value and the global value of a 
solution produced by the MBSA, normalised to the global optimum value. 
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5.3 Performance Comparison with Varying 
Number of Agents 

The results of simulations (3) and (4) are shown in Figure 11 and Figure 12. 
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Figure 11. A graph showing the performance of the MBSA with varying number of bidders. 
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Figure 12. A graph showing the difference in the global optimum value and the global value of a 
solution achieved by the MBSA, normalised to the global optimum value. 
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5.4 Discussions on the Performance of the 
Market Based Scheduling Algorithm 

It is observed that the performance of the MBSA is better when the bidders use the 

SFBSCA strategy compared to the case where the bidders use the SFB strategy.  This is 

seen from the graphs that the average global value of the solution when the SFBSCA 

strategy is used is higher than that when the SFB strategy is used. 

 

From Figure 9, it is noted that when there are only two slots and two bidders, the solution 

when the bidders use the SFBSCA strategy is the same as that using the SFB strategy.  

This is because when there are two bidders with each requiring two slots, a bidder either 

bids the two available slots or quits.  Hence, at any time, the two slots are either both bid 

by a bidder or both not being bid for.  There is therefore no situation where a bidder 

needs to consider the sunk cost. 

 

It can be seen from Figure 10 that the performance of the MBSA improves when there 

are more resources in the system.  When there are more slots, there are fewer instances 

where the bidders fight for a slot.  When a bidder requires two slots and ends up getting 

only one, the global value is affected.  This is because the reserved price of that slot 

cannot be summed to the global value and the value of the bidder (that gets only one slot) 

also cannot be summed to the global value.  A better assignment would be to leave that 

slot unallocated. 

 

Keeping the number of total slots constant, we see that the performance of the MBSA 

degrades when the number of bidders in the system increases.  If there are more bidders 

in the system, the chance of the slots being allocated to different bidders (and some of 

them do not get enough slots) is higher.  Hence, the global value of the solution is lower. 

 42



CHAPTER 5   PERFORMANCE OF THE MARKET BASED ALGORITHM 

Hence, the performance of the MBSA performance is better when the ratio of slots to 

bidders increases.  A manufacturing company should be aware that when the resource to 

job ratio decreases, the performance of the MBSA may start to degrade.  One way to 

avoid this is to design the reserved price of the slots such that optimum results will 

always be produced by the MBSA.  An analysis of the effect of the reserved price on the 

optimality of the solution is presented in the next chapter. 
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CHAPTER 6 WHEN THE MARKET BASED 
ALGORITHM UNDER-PERFORMS 

When one uses the MBSA, one may be interested in the worst possible performance of 

the algorithm.  Also, one may wish to adjust parameters of the auctions, such as the 

reserved prices of the resources, in order to achieve a better result.  In this chapter, the 

lower bound of the global value of solutions produced by the MBSA is derived.  After 

that, conditions under which the MBSA performs badly are investigated. 

 

6.1 Upper Bound of Suboptimality 

6.1.1 Bidders with Single Slot Jobs 

In the scheduling problem where each bidder requires only one slot, Wellman showed 

that the global value of a solution produced by the MBSA is at most )1( κκε +  lower 

than the global optimum value [6].  Here, [ ]MN ,min=κ  where  is the total number 

of slots and 

N

M  is the total number of bidders. 

 

6.1.2 Bidders with Two-Slot Jobs 

In this section, we derive the lower bound of the global value of a solution produced by 

the MBSA when there are two bidders and each bidder required two slots to complete 

their jobs.  The jobs are non-preemptive.  That means that the bidders do not require slots 

in sequence. 
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We define the vector  to be the allocation of slots to the bidders 

where slot 0 is assigned to bidder  and so on. If 

[ 110 −= Nfff ...f ]

0f 1−=if , slot i  is unallocated.  The 

following system is considered: 

1. There are two bidders, bidder 0 and bidder 1, with values  and  

respectively.  In addition, 

0v 1v

10 vv ≤ .  Bidder 1 has a value higher or same as bidder 

0. 

2. Each bidder requires two slots to complete its job. 

3. Each bidder uses the SFBSCA strategy. 

4. There are four available time slots: slot 0, slot 1, slot 2 and slot 3, each with the 

reserved price of  respectively.  Without loss of generality, the 

time slots are in the order of non-increasing reserved price, that is 

.  The lowest reserved value is 

3210 and,,, qqqq

3210 qqqq ≥≥≥ 3min qq =  and the highest 

reserved value is 0max qq = . 

 

To find the global value of a solution, we first break up the problem into different 

categories.  The categories are divided according to the optimum solution of the problem.  

This way of dividing the problem makes the derivation of the global value systematic 

and relatively easy.  After dividing the problem domain into different categories, we look 

into each category and find out how suboptimality may arise.  This is done by comparing 

the optimum solution with any suboptimum solutions that may be generated using the 

MBSA.  Suboptimality of a solution is defined as: 

 Suboptimality = Global optimum value − Global value of a solution 

 

There are three categories of optimum solutions: 
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1. The optimum solution is [ ]1111 −−−−=f  if the highest global value is 

achieved by not allocating any slot to any bidder. 

2. The optimum solution is [ ]0011=f  or any permutation if the highest global 

value achieved by allocating all four slots to both bidders. 

3. The optimum solution is [ ]1111 −−=f  if the highest global value is achieved 

by allocating the two cheapest slots to bidder 1. 

 

A solution is a suboptimum solution if its global value is strictly less than the global 

optimum value.  We give an example of how a suboptimum solution may arise in 

Appendix A.  In Appendix B, we analyse how a suboptimum solution may result using 

the MBSA.  In addition, we derive the upper bound of the suboptimality in each 

category. 

 

The results are summarised in Table 2.  If a scheduling problem falls into category (a), 

(b), or (g), the MBSA will always produce an optimum solution.  A suboptimum solution 

may occur if the problem falls into category (h).  In that case, assuming the price 

increment for each round of bidding is small, that is 
2
maxq

<ε  and minq<ε , the upper 

bound of the suboptimality of a solution using the MBSA is . maxq
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Table 2. A summary of the upper bounds of the suboptimality of solutions produced by the 
MBSA. 

 Optimum solution 

(or any permutations) 

Suboptimum solution (or 

any permutations) 

Maximum 

suboptimality 

(a) [−1  −1  −1  −1] No suboptimum solution − 

(b) [1  1  0  0] No suboptimum solution − 

(c) [−1  0  1  1] is not an optimum 

solution 

− − 

(d) [−1  1  0  0] is not an optimum 

solution 

− − 

(e) [−1  −1  −1  0] is not an 

optimum solution 

− − 

(f) [−1  −1  −1  1] is not an 

optimum solution 

− − 

(g) [−1  −1  0  0] 

- when , it is not a 

global solution 

01 vv >

- when , refer to (h) 01 vv =

− − 

[−1  0  1  1] maxq  

[1  1  0  0] ε+− minmax qq  

[−1  −1  0  0] )( ε201 <− vv  

(h) [−1  −1  1  1] 

[−1  1  0  0] is not possible − 
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6.2 The Effect of Bidders’ Values on the 
Optimality 

In the previous section, we derived the upper bound of the suboptimality of solutions 

produced by the MBSA.  Besides the bound, one may be interested in knowing under 

what circumstances the MBSA always gives an optimum solution.  In this section, we 

investigate the combinations of reserved prices and bidders’ values that make the MBSA 

produces optimum solutions. 

 

The following system is considered. 

1. There are four or more slots.  The four lowest reserved prices of the slots are 

 where DCBA and,,, qqqq DCBA qqqq ≤≤≤ . 

2. There are two bidders, each requires two slots.  The values of the bidders are  

and . 

0v

1v

 

We found that for a given set of reserved prices, the bidders’ values space can be divided 

into a few regions which each region has one of the following characteristics: 

1. The MBSA always produces an optimum solution. 

2. The MBSA always produces a suboptimum solution. 

3. The MBSA sometimes produces an optimum solution depending on the 

sequence in which the order bids and the slots that a bidder bids when there are 

more than two slots of same price. 
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Figure 13. A graph showing regions in which suboptimality will always/will never/may 
sometimes occur. 
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The regions are shown in Figure 13.  If the bidders’ values fall into the grey regions, the 

MBSA may produce suboptimum solutions.  If the bidders’ values fall into the dotted 

region, suboptimum solutions will always occur.  Otherwise, the algorithm will always 

produce optimum solutions.  The full derivation of the graph can be found in Appendix 

C. 

 

In practice, a manufacturing factory may wish to reduce the grey region and the dotted 

region by adjusting the lines .  This can be done by changing the four 

lowest reserved prices of the slots.  Doing so, it is possible to reduce the possibility of 

bidders’ values (which the manufacturing company has no control) falling into the grey 

region or the dotted region; and thus reduces the possibility of suboptimum solutions.  To 

guarantee that the MBSA always produces optimum solutions, we can set 

5432 Land,L,L,L

DCBADCBA or qqqqqqqq ===+=+ .  Otherwise, the MBSA may produce 

suboptimum solutions. 
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CHAPTER 7 IMPLEMENTATION OF THE 
MARKET BASED ALGORITHM 

In this chapter, we present the issues and findings of implementing the MBSA in Robot 

Cell Test Harness and in Cambridge Auto-ID Lab which implements an HMS.  Robot 

Cell Test Harness is a simulated environment designed according to Cambridge Auto-ID 

Lab.  We propose modifications to the original MBSA to suit a manufacturing 

environment.  This is followed by a brief description of the Auto-ID Lab set up and the 

simulation. We present the implementation results on both simulations and on a physical 

HMS system.  At the end of this chapter, we present our investigations of the effect of 

varying slot period on the performance of the MBSA. 

 

7.1 Adapting the Market Based Scheduling 
Algorithm in an HMS 

In this section, we present our proposed modifications to the original MBSA for it to be 

implemented in a real time manufacturing system. 

 

7.1.1 Continuous Auction 

For a manufacturing system in general, orders from customers arrive in a random order, 

even after an initial schedule is made.  This requires the auction for a slot to be “open” 

until some time before a job is processed in that slot.  In this case, a schedule can 

constantly be updated with new information, which is the winning bidder for each slot.  

The question now is how early an auction for a slot must be closed prior to that slot. 
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Considering a typical manufacturing environment where products are stored at a distance 

from the machines, a product must travel to the vicinity of the machine at certain time 

before its scheduled slot for operation.  The travelling time may vary depending on its 

location in the storage area and the position of the machine with respect to the storage 

area.  Supposing the maximum time it takes to transport a product from the storage area 

to the vicinity of the machine is , a product may not be able to get to the machine 

if it bids for a slot within  before the time of operation. 

travellingT

travellingT

 

T DT 

 
Figure 14. A job can only bid for slots DT time ahead. 

 

In order to make sure that a product arrives at the vicinity of the machine before its slot, 

it must bid for a slot that is at least D slots ahead.  Referring to Figure 14, at time 

between 11 ttTt <≤− , an order can only bid for slots  onwards.  This also means 

that the auction for slot  closes at , which is 

DkS +

DkS + 1t DT  before the starting of the slot (at 

).  D must satisfy the following condition: DTtt += 1

        Q 3 travellingTDT ≥

Here, T  is the period of a slot. 

 

If every product has a different travelling time from the storage area to the vicinity of the 

machine, a product may not be queued at the machine according to the schedule.  In 

general, the product may be placed in a temporary storage place near the machine.  

t = t1 + (D+1)T 

                                           Sk1      Sk                                      Sk+D                                          

t = t1 t = t1 + DT
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Referring to Figure 14, at Tttt +<≤ 11 , the product scheduled in slots  to  

(inclusive) may have arrived and the product processed in  may not have left the 

vicinity of the machine.  We assume that any product processed on slots earlier than  

have left.  Hence the maximum number of product cluttered at the vicinity of a machine 

at any one time, Q , given by the following equation: 

kS DkS +

1−kS

1−kS

 2+= DQ         Q 4 

This poses a physical constraint on D . 

 

7.1.2 Selection of the Time Slot Period 

In this research, a constant slot period is considered.  A constant period is useful when an 

order bids for a slot and it needs to know when the slot is to be executed so as not to miss 

its deadline.  The choice of the slot period is important.  Choosing a slot period that is 

too small might cause an operation to exceed its slot.  This might affect the operations in 

subsequent slots.  Choosing a slots period that is too large causes a waste of resources as 

more slots could have been allocated and more jobs could have been processed. 

 

The slot period must be at least equal to the operation time of a product.  The operation 

time is different for different manufacturing processes.  In general, the operation time 

depends on the speed of the machine and the number of products at the machine vicinity, 

.  This can be expressed by the following inequality: Q

         Q 5 )(QTT operation≥

Here,  is the operation time and it may be dependent on . )(QToperation Q
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As we would like to pack as many items as possible (efficient use of resources) in a 

given period of time, the design problem is to minimise T  with Q 3 and Q 5 as 

constraints.  The fixed variables in these two equations is T .  It can be measured 

directly from the system.  One method that can be used to minimise 

travelling

T  is: 

1. Measure . travellingT

2. For , up to the limit constrained by Q , measure . ...,3,2,1=D )(QToperation

3. For each D , calculate the minimum value of T  that satisfies Q 3 and Q 5. 

4. Choose D  of which the minimum of T  in (3) is the smallest. 

 

7.2 Cambridge Auto-ID Lab 

Cambridge Auto-ID Lab is a testbed for an HMS.  The system is implemented using an 

MAS.  Each order (an order is a customer’s request for a box to be packed with certain 

items in certain orientation) and each robot (which constitute the resource) has a software 

agent that controls it and interacts with other agents. 

 

Figure 15 depicts the robot pick-and-place setup in Cambridge Auto-ID Lab.  The gift 

boxes are placed on shuttles that travel on the track loops.  The shuttles constantly travel 

round the main loop.  When an order arrives, a particular gift box is assigned to the 

order.  The aim of the system is to pack gift boxes before their deadlines.  One packing 

operation involves the following steps: 

1. The shuttle that carries the box moves into a side loop. 

2. It stops at the docking station. 

3. The robot picks items from the storage area and places them into the gift box. 

4. After a box is packed, the shuttle travels back into the main loop. 
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Item storage 

Side loop 2 

 
Figure 15. Robot pick-and-place setup in Cambridge Auto-ID Lab. 

 

In such a set up, the main loop represent the storage area in which a box is “stored” and 

the side loop represents the vicinity of packing operation.  , which is the 

maximum time for a shuttle to travel from anywhere in the main loop into a side loop, is 

the time for a shuttle travels once round the main loop, .  Before the execution 

of an order, the shuttle must be left in the side loop and cannot be positioned in the 

docking station.  This is because there might be another order that wants to use the 

docking station.  Hence the operation time, , consists of the time taken for a 

shuttle to travel from the side loop to the docking station plus the time taken for the robot 

to pack the box.  Taking the worse case situation, the time taken for a shuttle to travel 

from the side loop to the docking station is the time for it to travel once round the side 

loop.  Hence, 

travellingT

loopmainT _

)(QToperation

 packingloopsideoperation TQTQT += )()( _      Q 6 

 
Robot 

Docking 
station 1 

Docking 
station 2 

Side loop 1 

Gate 1 Gate 2

Main loop 

Shuttles
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Here,  is the time for a shuttle to travel once round the side loop when there 

are  shuttles in the side loop and  is the time taken for the robot to pack a box.  

 is independent of . 

)(_ QT loopside

Q packingT

packingT Q

 

7.3 Implementation on Robot Test Cell Harness 

7.3.1 Simulation Setup 

The implementation of the MBSA is first tested on Robot Test Cell Harness, a simulated 

HMS designed according to the setup in Figure 15.  The interface between the 

scheduling program and the simulation is described in Appendix D. 

 

Table 3. Reserved price of slots used in simulation. 

Slot index 0 1 2 3 4 5 6 

Reserved price 9 5 2 2 3 4 5 

 

Table 4. Configurations of orders used in simulation. 

Order number Value Arrival time Deadline 

0 4 1 10 

1 5 0 10 

2 4 1 10 

3 7 2 3 

 

A scheduling problem of a system with seven slots and four orders are simulated.  The 

reserved prices of the slots are shown in Table 3 and the value, arrival time, and deadline 

of the orders are shown in Table 4.  The values of the reserved prices are chosen in such 

a way that there are two cheap slots so that orders that arrive late will bid for them.  This 

allows us to show certain behaviours of the algorithm.  The orders’ values are chosen in 
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such a way that they have enough value to bid for the slots.  There is a rush order (order 

3) which arrives late and has an early deadline.  In this simulation, for simplicity, we 

assume that an order arrives just before the beginning of a slot and the deadline is at the 

end of a slot.  For example order 0 arrives just before the beginning of slot 1 and its 

deadline is at the end of slot 10.  Also, time taken for the bidding to reach equilibrium is 

assumed to be negligible. 

 

7.3.2 Implementation Results on Robot Test Cell Harness 

7.3.2.1 Calculation of Slot Period T and D 

Based on 500 simulation runs, the time for a shuttle to go once round the main loop, time 

for a shuttle to go once round the side loop and the pacing time are recorded and the 

maximum value out of the 500 simulation is as shown below.  The time scale is based on 

unit simulation time. 

  sT loopmain 53_ =

  sTpacking 22=

Table 5. Time taken for a shuttle to travel once round the side loop in simulation. 

Q  )(_ QT loopside  

1 19s 

2 23s 

3 33s 

4 38s 

5 49s 

 

From the data above, we find the minimum T  based on the following constraints: 

 D
T

T loopmain _≥
        Q 7 
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       Q 8 packingloopside TQTT +≥ )(_

and Q 4 on page 53. 
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Figure 16. The constraints of slot period for simulation. 

 

Figure 16 shows the constraints of Q 7 and Q 8 plotted on a graph.  We see that the 

minimum T  is 55s at 1=D . 
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7.3.2.2 Simulation Outputs 

slot for 3T ≤  t < 4T SCHEDULE OPERATION 

 
Figure 17. Extracts of auctions and packing operations in simulations. 
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Figure 17 shows a simulation run of an auction and packing operations.  The left column 

shows the bidding process and the right column shows the packing operations.  The 

vertical axis indicates the evolution of time (not drawn to scale).  As stated earlier, all 

bidding reaches equilibrium at just before the beginning of a slot and the time taken is 

negligible compared to one slot period.  Each packing operation is executed and 

completed within each time slot.  Slots in grey are slots that are not available for bidding, 

as the auction for those slots are closed. 

 

Just before the beginning of time slot 0, only order 1 has arrived.  As 1=D , only slots 1 

to 6 are available for bidding.  Slots 2 and 3 (both with price $2) are the cheapest, order 1 

selects slot 3 by random.  This increases the price of slot 3 to $3.  Just before Tt = , 

orders 0 and 2 arrive and join the auction.  As the cheapest slot now is slot 2, both order 

0 and 2 bid for that slot.  As indicated in the diagram, the bid from order 0 arrives first 

(the arrival of bids are simulated in random) and it gets slot 2.  Order 2’s bid, which 

arrives late, will be rejected (not shown in the diagram).  So it bids for the next slot 3, 

which is initially owned by order 1.  As order 1 now loses its slot, it bids for slot 2.  

Order 0, which originally owned slot 2, is being outbid and it bids for slot 4.  At this 

point, the auction reaches equilibrium as no order places further bids.  The bidding starts 

again when order 3 arrives before Tt 2= . 

 

7.4 Implementation on the Physical Cell in 
Cambridge Auto-ID Lab 

As the simulated environment, Robot Test Cell Harness, is designed to be very similar to 

the actual hardware set up in Cambridge Auto-ID Lab, little problem is encountered 

when the scheduling program is migrated from the simulated environment to the actual 
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lab environment.  This implementation phase serves to verify the results obtained in the 

simulations. 

 

7.4.1 Scenarios to be Tested 

To verify the results of implementation on simulations, a similar scheduling problem 

with orders’ information as stated in Table 3 on page 56 and reserved prices as stated in 

Table 4 on page 56 is tested.  The MBSA is tested in the following two different lab 

configurations: 

1. One docking station (docking station 1) and one robot. 

2. Two docking stations (docking station 1 and docking station 2) and one robot. 

 

7.4.2 Modifications on the Algorithm for Two Docking 
Stations 

Slots for docking station 1 

Slots for docking station 2 

S0 S1 S2 S3 S4 S5 S6 S7 S8 ……………………………………

T 
 

Figure 18. Assignment of slots for two docking stations. 

 

In the case where two docking stations and one robot are in use, the scheduling algorithm 

will have to be modified.  Since there is only one robot, the schedules for both docking 

stations are dependent.  At any time, only shuttle in either docking station will be 

packed.  One possible way of allocating tasks on the docking station is to have them 

operating at alternate slots.  The odd slots are assigned to docking station 1 and the even 

 61



CHAPTER 7   IMPLEMENTATION OF THE MARKET BASED ALGORITHM 

slots are assigned to docking station 2.  In this case, the maximum number of shuttles in 

a side loop at any time will be different from that in Q 4.  Appendix F shows that  for 

the case of two docking station is 

Q
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⎧
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7.4.3 Implementation Results on Physical Hardware 

7.4.3.1 Calculation of T and D 

As the values of ,  and  in the lab set up are different from 

that in simulations, the choice for 

loopmainT _ )(_ QT loopside packingT

T  and D  have to be re-evaluated.  Also, the timing 

information for side loop 2 has to be considered.  Below are the largest readings taken 

from ten samples. 

  s

s

3.61_ =loopmainT

  6.69=packingT

 

Table 6. Time taken for a shuttle to travel once round a side loop in the physical cell. 

)(_ QT loopside  
Q  

Side loop 1 Side loop 2 

1 29.5s 26.5s 

2 32.5s 31.6s 

3 34.1s 31.0s 

4 34.6s ─ 
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For the case of one docking station, the calculation for T  and D  follows that in Section 

7.3.2.1 on page 57. 

 

15.3
20.4

30.7

61.3

102.2 103.7 103.7102.2

100.7100.7101.3101.3

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4
D

T

T = T_main_loop / D

T = T_side_loop(Q) + T_packing for side loop 1

T = T_side_loop(Q) + T_packing for side loop 2

 
Figure 19. The constraints of slot period for lab setup with two docking stations. 

 

For the case of two docking stations, the constraint Q 8 on page 58 for both the docking 

stations is taken in account.  Also Q 4 on page 53 is replaced by Q 9 on page 62. Figure 

19 shows the constraints of T  plotted on a graph.  We see that the minimum T  is 102.2s 

at .  2or1=D 1=D  is preferred as the later the auctions close, the more flexible the 

system is.  Table 7 show the choice of slot period, T , and D . 

 

Table 7. The choice of T and D for the physical cell. 

 One docking station Two docking stations 

T 103.7s 102.2s 

D 1 1 
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7.4.3.2 The Schedule Produced by the Market Based Scheduling 
Algorithm 

As the same schedule problem is tested on simulations and on physical hardware, the 

MBSA produces the same solution for both cases, which is depicted in Figure 17 on page 

59.  The solution is reproduced in Table 8 for easier reference. 

 

Table 8. Slots assignment to the orders. 

Slot index Order to be processed 

0 Unallocated 

1 Unallocated 

2 1 

3 3 

4 2 

5 0 

6 Unallocated 
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7.4.3.3 Implementation Results on Physical Hardware with One 
Docking Station 

 

2.03T 2T 
2.07T 

Order 1 being processed 
Slot 2 

 
Figure 20. Time diagram showing the time which the robot starts/finishes packing the boxes in a 
system with one docking station. 

 

Figure 20 depicts the actual operations that took place in three sample runs.  As indicated 

in the diagram, time between TtT 32 <≤  belongs to slot 2 and so forth.  The thick 

vertical bars indicate the packing operations.  Among the three runs, the earliest packing 

operation starts at time  and the packing operation ends latest at time 

.  The packing start time and finish time for other orders are shown in a similar 

manner. 

Tt 03.2=

Tt 72.2=

3T 

4T 

5T 

6T 

t 

Order 3 being processed 

Order 2 being processed 

Order 0 being processed 
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7.4.3.4 Implementation Results on Physical Hardware with Two 
Docking Stations 

Docking station 1 Docking station 2 

2.06T 2T 

 
Figure 21. Time diagram showing the time which the robot starts/finishes packing the boxes in a 
system with two docking stations. 

 

Figure 21 shows the timing for packing operations when two docking stations are in use.  

The thick lines in the middle column represent packing operations done in docking 

station 1 and the right most column docking station 2. 
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7.5 Discussions on the Implementation Results 

7.5.1 The Ability of the Market Based Algorithm to Perform 
Scheduling in a Dynamic Environment 

The MBSA is able to perform scheduling in a dynamic environment.  This is done by 

using a continuous auction that we proposed.  This means that the auction for a slot can 

still accept bids up to some time before its execution.  It allows an order to arrive at any 

time, join the auction and bid for the slots. 

 

Referring to Figure 17 on page 59, only order 1 has arrived just before 0=t .  A 

schedule is made with order 1 being assigned to slot 3.  Later, just before Tt = , new 

orders (orders 0 and 2) arrive and a new schedule is formed. 

 

7.5.2 Rescheduling Time and Quality 

The rescheduling process is relatively simple using the MBSA.  For the case of new 

order arrival, the process involves: 

1. New order bids for its desired slots. 

2. If the slot is already owned by an order, the order that is outbid bids for another 

slot. 

3. The bidding stops when: 

a. All orders get their slots, or 

b. All orders that do not get their slots have insufficient value to bid. 

 

Referring to Figure 17, just before Tt 2= , order 3 arrives and the rescheduling is done 

in three bidding steps: 

1. Order 3 bids for slot 3. 
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2. Order 2 bids for slot 4. 

3. Order 0 bids for slot 5. 

 

We compare the solution produced by the MBSA with that of the optimum solution.  

After Tt 2= , all orders have arrived and no more rescheduling is done.  The MBSA 

produces a schedule that allocates slots 2, 3, 4, and 5 to orders 1, 3, 2, and 0 respectively.  

The global value for this solution is $39. 

 

In determining the optimum solution, we assume that all orders’ information is known at 

the beginning (this will not happen in a real system).  If all information is available 

before , an optimum solution is to assign slots 2, 3, 4, and 5 to orders 1, 3, 2, and 0 

respectively (taking into account the restriction of slots that an order can choose 

according to its arrival time).  The global optimum value is $39.  We see that the MBSA 

is able to achieve the global optimum value in this example. 

0=t

 

7.5.3 The Ability of the Market Based Scheduling Algorithm 
to Handle Rush Orders 

Order 3 arrives just before Tt 2=  and it has a deadline at the end of slot 3.  The 

simulation shows that order 2 was scheduled at slot 3 prior to the arrival of order 3.  

When order 3 arrives, it is able to grab slot 3 and the order 2 is successfully rescheduled 

to another slot.  Both orders are able to be processed before their deadlines.  This 

example shows that the MBSA is able to handle rush orders. 

 

In a conventional scheduling algorithm, when a rush order arrives and rescheduling is 

required, the entire scheduling algorithm is repeated with the added new information.  

However, the MBSA does not required re-evaluation of the entire schedule.  The 
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algorithm simply works by having the new order bidding for slots before its deadline and 

the outbid orders that lose their slots look for other slots. 

 

Here, it is noted that an order that comes late will only be able to get its required slots if 

it has sufficient value to bid for the slots.  In the case where it has a low value, it will not 

be able to compete with the existing orders and might not get slots before its deadline.  

This corresponds to a low priority order that has an early deadline.  In such situation, the 

solution that does not complete that order may be better. 

 

7.5.4 Verification of Simulation Results by Comparing All 
Slots are Packed within Their Slots 

We see in Figure 20 on page 65 and in Figure 21 on page 66 that all jobs are processed in 

their respective slots.  We verified that the results obtained in the simulations are a good 

representation of that on an actual physical system.  There is no job that exceeds its slot 

and there is no job that misses its slot.  This is due to the selection of D  which enables 

all jobs to be available to be processed in their respective slots and the selection of T  

which guarantees that all jobs finishes before the end of their slots. 

 

7.5.5 The Difference between One Docking Station and Two 
Docking Stations 

Comparing Q 4 on page 53 and Q 9 on page 62, we see that for a value of D , Q  for a 

system with one docking is greater than that with two docking stations.  This means that 

for a given D , the maximum number of shuttles in a side loop for one docking station is 

greater than that for two docking stations.  The physical configuration of the side loop 
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may restrict the total shuttles in the side loop.  So, by using a larger number of docking 

stations, the feasible range of D  increases. 

 

For a given D ,  is smaller when two docking stations are in use. As Q ( )QToperation  

normally increase monotonically with Q , a smaller T  may be selected.  A smaller T  

means that each slot has a smaller period and more slots can be scheduled for a given 

period of time. 

 

Summarising the points above, a system with a more resources (for example, a larger 

number of docking stations in the Auto-ID Lab setting) benefits from the following.  

Some of them are dependent on the others. 

1. Less products clutter at the vicinity of resources. 

2. A larger value of D  is possible. 

3. A smaller slot period is possible. 

 

7.6 Effect of Varying Slot Period on the Global 
Value 

In the previous section, T  and D  are calculated such that even if all shuttles take 

 to travel from the main loop into the side loop, take  to travel 

from the side loop into the docking station and  to be packed, all boxes can still 

be packed within their slots.  However since, most of the time, the actual time taken for 

these operations are less than the maximum values, we could expect the jobs can still be 

carried out within their slots even if a smaller 

loopmainT _ )(_ QT loopside

packingT

T  is selected. 
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7.6.1 Setup 

We consider a system with four orders, each requires one slot.  The calculations of the 

number of slots, the reserved prices, the orders’ value and D  are shown in Appendix E.  

We simulated a range of T  from 12s to 58s.  In each simulation, if an order cannot be 

packed in its slot, it bids again for another slot. 

 

7.6.2 Simulation Results 
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Figure 22. A graph showing the effect of varying T on the global value. 

 

Figure 22 shows the averaged global value of solutions by the MSBA when T  changes.  

For each T , the simulations are repeated ten times, except for s12=T  where twenty 

simulations are carried out.  The global value of the solution in each simulation may vary 
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as the simulated travelling time for shuttle and packing time are different in each 

simulation. 

 

7.6.3 Discussions 

From the graph, it is noted that: 

1. As T  decreases, the global value increases.  This is because if a job can be 

completed within its slot, selecting a smaller T  frees up more time and thus 

increases the global value. 

2. There is a dip in global value when D  increases.  This is because the slots are 

in monotonically increasing reserved prices (shown in Appendix E).  When D  

increases, a job has to select a later slot, which is more expensive. 

3. When the slot period approaches , the global value drops as some jobs 

miss their slots and they have to re-bid for other slots.  This decreases the global 

value. 

packingT

4. For , the standard deviation of the global value is 0.  This indicates that 

no job misses its slot and thus every simulation produces the same global value.  

However, when , some jobs miss their slots and they have to re-bid for 

other slots.  The variance gets larger as 

s26≥T

s26<T

T  gets smaller, because the probability 

for a job not being able to be completed within its slot is higher.  When the job 

cannot be completed within its slot, it bids for another slot and it may face the 

same problem of not being able to be completed in the new slot. 
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CHAPTER 8 CONCLUSIONS 

This research investigates the use of a MBSA in a distributed manufacturing system.  We 

performed simulations and analyses on the performance of the algorithm and 

successfully implemented the algorithm in Cambridge Auto-ID Lab, an HMS testbed. 

 

8.1 Original Contributions 

Our original contributions are: 

1. We compared the performance of the MBSA under varying number of 

resources, number of jobs and bidders’ bidding strategies.  We showed that the 

algorithm is able to produces close to optimum solutions. 

2. We derived the upper bounds of the suboptimality of the MBSA in a system 

with two jobs. 

3. We partitioned the scheduling parameter space in to regions in which the 

MBSA either (a) always produces optimum solutions, (b) never produce 

optimum solutions, or (c) sometimes produces optimum solutions.  As a 

scheduling system designer, one may design the system such that the possibility 

of an optimum solution being produced by the algorithm is higher. 

4. We proposed modifications to the MBSA so that it can operate in a dynamic 

system where jobs arrive randomly and perform rescheduling when rush orders 

arrive. 

5. We implemented the MBSA in an HMS.  A scheduling program is written to 

interface with the existing HMS in Cambridge Auto-ID Lab and to test the 

algorithm in an HMS. 
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8.2 Recommendations for Future Research 

From the results of this research, we see that the MBSA is a suitable scheduling 

algorithm to be implemented in a heterarchical, distributed manufacturing system.  We 

derived the boundaries for partitioning the parameter space (reserved prices and bidders’ 

values) in a scheduling problem in which solutions with different optimality may result.  

However, the analysis is limited to a system with two bidders.  We propose a future 

research to derive a generalised model for a system with any number of bidders. 

 

In this research, we modified the MBSA and implemented it in a real time, dynamic 

system with (a) one single resource, and (b) two resources with constraints.  We 

recommend future researches to look into multiple resources with different constraints. 

 

8.3 Conclusions 

From simulations, we found that the MBSA is able to produce close-to-optimum 

solutions.  However, the solutions degrade when the resource to job ratio decreases.  We 

showed that for a scheduling system with four slots and two jobs, the worst global value 

produced by the MBSA is at most  (which is the largest reserved price of the slots) 

lower than the optimum global value.  We also showed that if the reserved prices of the 

four cheapest slots are made equal, the MBSA will always produce optimum solutions. 

maxq

 

From the implementation of the MBSA in a simulated environment and in a physical 

HMS system, we found that with our proposed modifications, the MBSA can operate in 

a dynamic system whereby orders arrive randomly and is able to perform rescheduling to 

handle rush orders. 
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APPENDIX A AN EXAMPLE AUCTION 
SETTING TO SHOW SUBOPTIMALITY OF THE 
MARKET BASED ALGORITHM 

Consider the following auction settings: 

1. There are four slots, with reserved prices $10, $10, $8 and $2. 

2. There are two bidders, bidder 0 and bidder 1, with values $16 and $17 

respectively. 

3. Each bidder needs two slots. 

4. The price for a slot increases by $1 after each bid. 

 

By inspection, it is easily seen that the optimum solution is achieved by assigning slots 2 

and 3 to bidder 1, leaving slots 0 and 1 unassigned.  The global optimum value is $37. 
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1=ε  
$10 $10 $8 $2 

1: 0 

 
Figure 23. An example showing the MBSA produces a suboptimum solution, with bidders using 
the SFB strategy. 

 

Figure 23 shows an example of an auction with the above settings.  The bidders uses the 

SFB strategy and the solution achieve by the MBSA has a global value of only $27.  

Starting from the reserved prices of slots $10, $10, $8, and, $2, bidder 0 bids for slots 2 

and 3 because they are the cheapest.  Now, the bidder 0 is winning 2 slots and the prices 

for the slots is now $10, $10, $9, and, $3.  As the current prices for slots 2 and 3 are still 

cheaper, bidder 1 will bid for them.  The price for slots 0, 1, and 2 are now equal.  This is 

the point when the MBSA goes off the optimum solution.  In the optimum solution, slots 

0 and 1 are unallocated.  However, in the MBSA, the bidders start to bid for them when 

the price of slots 0, 1, and 2 is equally cheap.  As indicated in the third bidding round, 
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bidder 0 bids for slot 0 and slot 3.  The bidding continues until round 6 when bidder 1 

bids for slot 3 at $7.  It is noted that bidder 1 obtained slot 2 at $9 in the second bidding 

round and thus it has sufficient value to bid for slot 3 at $7 in the sixth bidding round.  

This makes the prices $11, $10, $10, and, $8; and the auction terminates as bidder 1 

acquires enough slots and bidder 0 has not enough value to bid for any more slots.  The 

global value for this solution is the sum of the reserved price of slot 1 ($10) and the value 

of bidder 1 ($17), which is $27. 
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APPENDIX B DERIVATION OF THE UPPER 
BOUNDS OF THE SUBOPTIMALITY OF 
SOLUTIONS PRODUCED BY THE MARKET 
BASED SCHEDULING ALGORITHM 

The following system is considered: 

1. There are two bidders, bidder 0 and bidder 1, with values  and  

respectively.  In addition, 

0v 1v

10 vv ≤ .  Bidder 1 gets a value higher or same as 

bidder 0. 

2. Each bidder requires two slots. 

3. Each bidder uses the SFBSCA strategy. 

4. There are four available time slots: slot 0, slot 1, slot 2 and slot 3, each with a 

reserved price of  respectively.  Without loss of generality, the 

slots are in the order of non-increasing reserved price, that is .  

The lowest reserved value is 

3210 and,,, qqqq

3210 qqqq ≥≥≥

3min qq =  and the highest reserved value is 

0max qq = . 

 

In deriving the suboptimality of a solution, we first break up the problem domain 

described above into different categories.  The categories are divided according to the 

optimum solution of the problem.  After that, we look into each category to find out how 

suboptimality may arise.  This is done by comparing the optimum solution with any 

suboptimum solutions that may be generated using the MBSA.  There are three 

categories of optimum solutions: 
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1. The optimum solution  is 1f [ ]1111 −−−− .  Under this situation, it is easily 

seen that }10,{and}32,1,0,{,,where, ∈∀∈∀≠>+ kjijivqq kji .  In other 

words, the best allocation is such that no bidder gets any slot.  This happen 

when the sum of the reserved price of any two slots is higher than the value of 

any bidder.  Therefore, no bidder will ever bid for the slots and thus the MSBA 

will always produce optimum solutions. 

2. The optimum solution  is 2f [ ]0011  or any permutation.  The global value of 

solution  is 2f 102 vvv +=)(f .  This means the value  and  are both greater 

than the sum of any two of the reserved prices, particularly .  

This is because if any of two reserved prices sums to be greater than , a better 

solution would have been leaving the two slots unallocated.  In other words, in 

any auction there will be no slot which any bidder is unable to bid.  Hence any 

solution of the MBSA that is different from the permutation of  is not 

possible since both the bidders will never leave any slots unbid.  For example, 

suppose a suboptimum solution produced by the MBSA is 

0v 1v

jiqqv ji ,,0 ∀+≥

0v

2f

[ ]10113 −=f  

(bidder 1 gets 2 slots, bidder 0 gets 1 slot and slot 3 is unallocated).  Here, the 

value of the solution  must be less than that of  (by the definition of 

suboptimality).  That is 

3f 2f

313102 qvvvvv +=>+= )(f)(f  or .  This is a 

contradiction because bidder 0 will have sufficient value to bid for time slot 3 in 

the auction.  So,  cannot be a solution produced by the MBSA if  is the 

optimum solution. 

30 qv >

3f 2f

3. When the optimum solution is [ ]11114 −−=f , four possible suboptimum 

solutions are: 

a.  or any permutation [ 11015 −=f ]
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b.  or any permutation [ 00116 =f ]

]

]

c.  or any permutation [ 00117 −−=f

d.  or any permutation (shown to be impossible later) [ 10018 −=f

 

It is noted that any permutation of [ ]0011−  or [ ]1101−  cannot be an optimum 

solution because the global value of [ ]0011 −−  or [ ]1111 −−  is higher.  Similarly, 

any permutation of [ ]0111 −−−  or [ ]0111 −−−  cannot be an optimum solution 

because the global value of [ ]1111 −−−−  is higher. 

 

Any permutation of [  is not a global solution when  because 

 has a higher global value.  When 

]

]

0011 −− 01 vv >

[ 1111 −− 01 vv = , the analysis is the same as that in 

(3) but with extra constraint. 

 

Therefore, only case (3) may results in suboptimum solutions.  In order to find the lower 

bound of the global value, the following cases are considered. 

 

For 3(a), the suboptimum solution is [ ]11015 −=f  or any permutation.  An auction 

leads to a solution  when bidder 0 places its bids but subsequently one of the slots is 

outbid by bidder 1.  Furthermore, bidder 0 does not have sufficient value to bid for any 

other slots.  The suboptimality is therefore 

5f

)(f)(f 54 vv − .  This value is has the maximum 

value of [ ]=− )(f)(f 54max vv  ( ) ( )[ ] ( )110110 maxmax qvqvqq =+−++ .  Since , the 

function is maximised when 

10 qq ≥

max1 qq = . 
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For 3(b), the suboptimum solutions is [ ]00116 =f or any permutations.  The maximum 

suboptimality is  

[ ] ( ) ( )[ ] ( )0101011064 maxmaxvmax vqqvvvqqv −+=+−++=− )(f)(f .The function is 

maximised by setting max10 qqq == .  To maximise the suboptimality,  is chosen to be 

as small as possible.  However, there are further constraints on  as described below. 

0v

0v

1. Since the reserved prices are arranged in a non-ascending order, bidders will 

start bidding from slot 2 and slot 3. 

2. We see in  that both slot 0 and slot 1 have being bid for, the prices for slot 2 

and slot 3 must have reached  before that can happen.  When the prices for 

slot 2 or slot 3 reaches , a bidder may choose to bid for slot 1 (rather than slot 

2 or slot 3) since they are equally cheap. 

6f

1q

1q

3. From the condition max1 qq = , bidder 0 must have bid slot 2 at the price 

)( ε−maxq , making the price of slot 2 to be .  This gives bidder 1 the 

possibility to bid for either slot 0, slot 1 or slot 2. 

1q

4. Bidder 1 must be bidding two slots at that time because prior to this stage, both 

bidders were only been bidding for slot 2 and slot 3.  So in each round, both 

slots won by the same bidder. 

5. To minimise  it is set to be only sufficient for bidder 0 to bid the cheapest 

slot (which is slot 3) at the lowest possible price (which is ) and also slot 2 

at 

0v

minq

)( ε−maxq  as mentioned in (3) above. Hence the smallest possible value of 

 is 0v )( ε−+ minmax qq .  Hence the maximum suboptimality is 

=−+ )( 010 vqq [ ]=−+−+ )(( εminmaxmaxmax qqqq )( ε+− minmax qq . 
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For 3(c), the suboptimum solution is [ ]00117 −−=f  or any permutation.  An auction 

will terminate with a solution  if bidder 1 is unable to offer higher bids to those slots 

held by bidder 0 and also unable to bid for the unallocated slots.  For  to be a 

suboptimum solution, the value of bidder 0 must be smaller than the value of bidder 1, 

that is .  This results in .  Here, bidder 0 is able to bid the slot 2 and 

slot 3 at prices  and  respectively, hence 

7f

7f

01 vv > )(f)(f 74 vv >

2p 3p 320 ppv +≥ .  After that, the prices of 

slot 2 and slot 3 are )( ε+2p  and )( ε+3p  respectively.  Since the solution is allocating 

slot 2 and slot 3 to bidder 0, bidder 1 must have had not enough value to bid, that is 

εε +++< 321 ppv .  Combining this with the condition in the previous paragraph, we 

have ε201 <− vv  and the suboptimality is given by ε20174 <−=− vvvv )(f)(f . 

 

 
Figure 24. A bidder has a higher value but loses in an auction 

 

An example is given in Figure 24.  Here bidder 0 has $5 and bidder 1 has $6.  The 

optimum solution is assigning slot 2 and slot 3 to bidder 1 and leaving slot 0 and slot 1 

unallocated.  The global optimum value is $16.  In the example, bidder 0 bids first.  After 

one round of bidding, bidder 1 is unable to bid because the sum of price of any two slots 

exceeds its value.  The global value of the solution is $15. 

 

1: 
0 

2: 
1 

unable to bid 

$5 $5 

  

$4 $1 

$5 $5 

0 0

$5 $2 
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For 3(d), the suboptimum solutions is [ ]10018 −=f  or any permutation.  As bidder 1 

will never bid for only one slot, it must have bid for two slots but one of them is outbid 

by bidder 0.  Hence one of the slot that bidder 0 holds must have a price of εkqp ii +=  

before bidder 0 bid for that slot, where  is the slot index and )2or1(i +Ζ∈k .  In the 

solution, we see that bidder 0 wins slot 1 and slot 2, hence  (prices shown 

are at the time when bidder 0 bids).  Bidder 1 is unable to bid further only if 

210 ppv +≥

ε+< 11 pv  

and ε+< 21 pv .  But one of these must be false as 2101 ppvv +≥≥  and εkqp ii += .  

There is a contradiction and therefore  can never result from the MBSA. 8f
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APPENDIX C DERIVATIONS OF RESERVED 
PRICES AND BIDDERS’ VALUES THAT 
PRODUCES SUBOPTIMUM SOLUTIONS 

C.1 Specific Set of Reserved Prices 
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─   □   ○   + The market based algorithm will always produce an optimum solution 

L6’ 

L1’ 

 
 
 
 
 
 
 
 
Figure 25. A graph showing the effect of bidders’ values on the optimality of the solution. 
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In this section, we investigate the effect of bidders’ values on the suboptimality of a 

schedule.  A system consisting of four slots and two bidders is considered.  Each bidder 

requires two slots.  The reserved prices of the slots are chosen to be $7, $6, $4, and $2 

for slot 0, slot 1, slot 2, and slot 3 respectively.  The values are chosen in such a way that 

different scenarios in an auction can be demonstrated.  Using this example, we show how, 

by varying the value of the bidders, different solutions are produced by using the MBSA.  

Figure 25 shows results obtained by analysis.  Based on these results, the MBSA will 

either: 

1. always produce optimum solutions, 

2. never produce optimum solutions, or 

3. sometimes produce optimum solutions depending the sequence of bidding and 

the slot selection when more than two slots are of equal prices. 

 

If each bidder has less than $6, none of them will be able to bid for any two slots.  Hence 

the market algorithm produces a solution that assigns no slot to any bidder.  We can also 

see that there is no schedule that gives a higher global value than this.  Hence the MBSA 

will always produce optimum solutions. 

 

On the other extreme end, if both bidders have $13 or more, they will be able to get 2 

slots each.  As the sum of the reserved price of any two slots is $13 or less, the optimum 

schedule is to assign all four slots to both bidders.  If one bidder has exactly $13, a 

schedule that assigns slot 0 and slot 1 to this bidder will give the same global value as the 

schedule that leaves slots 0 and 1 unassigned.  However, in both cases, the solutions are 

optimum.  So, the MBSA, which assigns all four slots to both bidders, will definitely 

achieve optimum solutions when both bidders have $13 or more. 
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For any bidders’ values other than those two conditions mentioned above, the optimum 

solution is to assign slot 2 and slot 3 to the bidder with higher value and to leave slot 0 

and slot 1 unassigned.  To investigate the solutions produced by the MBSA, we look at 

how the bidders bid and when the auction terminates. 

 

 
Figure 26. A bidding process that shows how suboptimality arises. 

 

Figure 26 shows the bidding process of two bidders in an auction.  We define bidder A 

as the first bidder to bid. 

 

Consider the situation when bidder A has $6 or more and bidder B has less than $6.  

Only bidder A bids and the auction terminates at schedule SC1 (refer to Figure 26).  Slot 

2 and slot 3 will always be assigned to bidder A.  This is marked as □ in Figure 25.  The 

7 6 4 2 

Order A must have $6 or more A
SC1

7 6 5 3 

Order B must have $8 or more B 

7 6 6 4 7 6 6 4 

A

7 6 7 5 

7 7 7 6 

B 

7 7 6 

SC2 SC2

Order A must have $10 or more A

5 
SC3a SC3b

Order B must have $11 or more 

A suboptimal schedule     
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other bidder cannot bid at all as it has not enough value.  Under this condition, the 

MBSA always produces optimum solutions. 

 

If each bidder has $6 or more, both will be able to bid.  Also, if they have less than $8, 

no bidder will be able to bid at SC1 in Figure 26.  Since at SC1, only the two cheapest 

slots are being bid for, a solution is optimum when the bidder with higher value gets the 

slots.  These cases are indicated by ○ in Figure 25. 

 

There are cases when the bidder with lower value gets the slots.  This happens when after 

the bidder with lower value bids, the price of the slots exceeds the value of another 

bidder.  For example, each bidder has $6 or more but less than $8; or each bidder has $8 

or more but less than $10.  For the former case, any bidder is capable of bidding in the 

first round.  But as each has less than $8, the bidding will stop at SC1.  If bidder A 

(bidder A will always bid first by definition) has $6 and bidder B has $7, bidder A will 

bid up the prices for slot 2 to $5 and slot 3 to $3.  Although bidder B has higher value, it 

will not be able to win the slots.  This is a suboptimum solution.  On the other hand, if 

bidder A has $7 and bidder B has $6, an optimum schedule can be achieved.  Under this 

condition, we see that the sequence of bidding determines if an optimum solution can be 

achieved.  Hence the MBSA may or may not yield an optimum solution.  This is shown 

as the shaded area (excluding the line 10 vv = ) in Figure 25. 

 

If one bidder has $8 to $10 and another has $10 or more (marked as ▲ in Figure 25), the 

bidding will reach the stage SC2.  At SC2, suboptimality may occur as the price of slot 2 

now equals to the price of slot 1.  This “gives” the possibility for a bidder to bid for slot 1 

and drives the schedule off its optimum solution.  Depending on the sequence of bidding, 

the auction may terminate at SC2 or SC3. 
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1. If bidder A has less than $10, the auction terminates at SC2 and the solution is 

optimum 

2. If bidder A has $10 or more, it continues to bid at SC2: 

a. If it selects slot 1 and slot 3, the auction terminates at SC3a and the 

solution is optimum. 

b. If it selects slot 2 and slot 3, the auction terminates at SC3b and the 

solution is suboptimum. 

We see that the MBSA may or may not produce an optimum solution, depending on the 

sequence of bidding and the random selection of the bidder when two slots are of equal 

price. 

 

If a bidder has $11 or more, and another bidder has $11 or $12, the MBSA will always 

produce suboptimum solutions.  This is because the auction will not terminate at any 

stage up to SC3a or SC3b.  We see that at SC3a or SC3b, bidder B has not gotten enough 

slots, so it bids further and produces a suboptimum solution. 

 

C.2 A Generalised Model of 4 or more slots and 2 
bidders 

Considering a system with four slots or more and two bidders (each requires two slots), a 

general model for the graph in Figure 25 is derived in this section.  We define the four 

lowest reserved prices of the slots to be , , , and  where . Aq Bq Cq Dq DCBA qqqq ≤≤≤

 

To derive a generalised model, the positions of the boundaries ( , , , , , 

and ) are determined based on the reserved prices of the slots.  Let  be the value of 

bidder 1. 

1L 2L 3L 4L 5L

6L 1v
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1. When both bidders have value less than )( BA qq + , no bidder can bid and hence 

the equation for  is 1L BA11L qqv +=: . 

2. If each bidder has a value greater than )( DC qq + , an optimum schedule is to 

allocate the four cheapest slots to both bidders.  So,  is . 2L DC12L qqv +=:

3.  determines the point at which both bidders are able to bid.  Rather than 

cutting towards the axis as L

3L

1, L3 extends away from the axis.  The equation for 

 is . 3L BA13L qqv +=:

4.  and  are the boundaries when the price of slot B increases to be equal or 

greater than the reserved price of the slot C, .  Say, in each round of bidding, 

the slot price increases by 

4L 6L

Cq

ε  and the price for slot B takes k  bidding rounds to 

be equal or greater than . In other words, Cq k  is the smallest integer that 

satisfies CB qkq ≥+ ε .  Here ⎥
⎥

⎤
⎢
⎢

⎡ −
=

ε
BC qq

k .  At this point a bidder can choose 

to bid slot C and drive the solution into suboptimality.  At the same time the 

price for slot A will be )( εkq +A .  So the bidder with lower value must have at 

least [ ] [ ]{ }εε )()( 11 BA −++−+ kqkq  to bid for slot B and slot A.  The bidder 

with higher value must have [ ])( εkqq ++ AC  to bid for slot C and slot A.  So 

ε)(: 12L BA14 −++= kqqv  and εkqqv ++= CA16 :L . 

5. It is also noted that suboptimality only occurs when both bidders are able to bid.  

Hence the suboptimality occurs in the intersection of the regions above , ,, 

and  

3L 4L

6L .

6.  is the boundary when either of the bidders will definitely bid for slot C.  

This happens when the price of the slot B is more expensive than that of slot C 

and both bidders are able to bid for slot C.  In this situation, any bidding 

5L
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sequence will definitely produces a suboptimum solution.  Suppose after l  

rounds of bidding, the price of slot B exceeds the reserved price of slot C, that is 

CB qlq >+ ε  where l  is an integer.  This can also be written as a floor function, 

1+⎥
⎦

⎥
⎢
⎣

⎢ −
=

ε
BC qq

l .  The price of slot A after l  rounds of bidding is ( )εlq +A .  

This means that both bidders must have at least [ ])( εlqq ++ AC  to bid for 

slots C and A.   is thus 5L εlqqV ++= CA5:L . 

7. However, in the region above both  and , a global optimum schedule can 

be achieved as both bidders will get two slots each.  Hence suboptimality only 

occurs above  but below . 

5L L

5L 2L

 

2

L1’, L2’, L3’, L4’, L5’and L6’ are defined in a similar way.  It is noted that in the region 

marked with ● in Figure 25, suboptimality may occur because of the small difference in 

the bidders’ values. 
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Figure 27. A sequence of bidding to show suboptimality occurs when both the bidders’ values 
fall in certain regions. 

 

Looking at Figure 27, we see that if each bidder has value between 

)()( ε2BABA ++<≤+ qqvqq i  for 2or1=i ; the bidding will stop at SC1.  The bidder 

that bids first will win the slot regardless whether its value is higher or lower.  In the 

latter case, a suboptimum solution results.  Similarly, if each bidder has value between 

)()( εε 42 BABA ++<≤++ qqvqq i , the bidder that bids at SC1 wins the slots even if it 

has lower value.  The schedule terminates at SC2 and the other bidder, having less than 

)( ε4BA ++ qq , will not be able to bid further.  This trend terminates when the price of 

slot B exceeds the reserved price of slot C.  Beyond this point, suboptimality may occur 

due to the reason described in (4) above.  Summarising, suboptimality may occur if each 

bidder has value between [ ]εε )()( 122 BABA +++<≤++ mqqvmqq i ; until  when a 

bidder bids slot C instead of slot B.  Here .  When both bidders have equal value, 

the schedule is always optimum. 

6L

+Ζ∈ 0m

 

qA qB qC qD

A

B 

SC1

SC2

qA+ε  qB+ε  qC qD

qA+2ε  qB+2ε qC qD

A

qA+3ε  qB+3ε qC qD

SC3

qA + qB + 2ε

qA + qB + 4ε

qA + qB

qA+kε  ≥ qC qC qD bidder’s value 
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v1

 
Figure 28. The region when suboptimality occurs due to a small difference between the bidders’ 
values. 

 

The region described above is represented by the grey blocks in Figure 28.  The region 

includes the solid lines but excludes the dotted lines. 

L3’ L4’
10 vv =  

L6’

v0

2ε 

2ε 

L6
ε)(: 12L BA14 −++= kqqv

2ε 

2ε 

BA13L qqv +=:  
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APPENDIX D DESCRIPTION OF ROBOT 
TEST CELL HARNESS 

 

 
Figure 29. The interface between the scheduling program and the simulated lab environment. 

 

Figure 29 depicts the interface between the program running the MBSA and Robot Test 

Cell Harness.  Robot Test Cell Harness is a software simulation of the robotic cell shown 

in Figure 15 on page 55.  The scheduling program reads a set of orders and slots from a 

file.  The file specifies the time an order arrives, its value, number of time slots that it 

requires and its deadline.  It also specifies the reserved values of the slots.  In the 

scheduling program, the MBSA is executed by simulating auctions where orders bid for 

slots.  An order only “appears” to the scheduling algorithm after it “arrives”.  The 

scheduling algorithm continually updates its schedule based on the current winning 

bidder (which in this case is an order) for each resource (which in this case is a slot).  
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The scheduling program receives simulated RFID (radio frequency identity) sensor 

readings, which allow the positions of some shuttles and boxes to be known.  The 

scheduling program sends commands to move a shuttle into the side loop or into the 

main loop when a shuttle arrives at the gates, to pack a box or to release a box into the 

side loop when it arrives at the docking station. 
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APPENDIX E CALCULATIONS OF 

RESERVED PRICES AND D FOR THE 

ANALSYIS IN SECTION 7.6 

This section shows the calculation for the reserved prices and the value of D  for the 

analysis in Section 7.6 on page 70.  In the simulation, we consider a system with four 

orders, each requires one slot.  The slots are available between time from 0s to 350s, that 

is .  For a fair comparison among the configurations of varying slot periods, the 

reserved price of each slot is determined by the length of the slot and the time of the slot.  

The price per second at any given time is listed in Table 9.  The price per unit time is in 

an increasing order as we want the jobs to bid for earlier slots.  This is to demonstrate 

that when the jobs are scheduled one after another and the slot period is too small, some 

jobs may not get to be processed on time. 

3500 <≤ t

 

Table 9. Price per second for the calculation of reserved prices. 

Time,  (s) t Price per second ($/s) 

500 <≤ t  0.5 

10050 <≤ t  1.0 

150100 <≤ t  1.5 

200150 <≤ t  2.0 

250200 <≤ t  2.5 

300250 <≤ t  3.0 

350300 <≤ t  3.5 

 

For example, a slot period of 50s ( sT 50=  ) over 3500 <≤ t  will produce the following 

reserved prices:  
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Similarly, a slot period of 34s will give the following reserved prices: 

 

It is noted that the period of the last slot is less than 34s.  This is due to the fact that 350 

is not divisible by 34.  However, the slot must be included for a fair comparison between 

different slot period settings.  To illustrate this point, consider when no job bids, we end 

up with a schedule with all unallocated slots.  In this case, we want the global value for 

the schedule to be equal regardless of T .  For example, when sT 50= , the global value 

is ( $25 + $50 + $75 + $100 + $125 + $150 + $175 = $700 ); when sT 34= , the global 

value is also ( $17 + $26 + $35 + $51 + $61 + $70 + $85 + $96 + $105 + $119 + $35 = 

$700 ). 

 

In some situations, the last slot is not “complete”, that is the slot period is less than T .  

In those cases, we do not allow any job to bid for that slot although its reserved price is 

low.  Also, in the system, all jobs arrive just before s0=t  and all of them have a value of 

$165.  The value is chosen such that all of them are able to get a slot. 

 

D  is calculated using the following equation: 

 
⎥⎥
⎤

⎢⎢
⎡=⎥

⎥

⎤
⎢
⎢

⎡
=

TT
T

D loopmain 53_

       Q 10 

This is to ensure that a shuttle is always available in the side loop at the beginning of its 

slot. 

$25 $50 $75 $100 $125 $150 $175 

$17 $26 $35 $51 $61 $70 $85 $96 $105 $119 $35 
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APPENDIX F CALCULATION OF Q FOR A 

SYSTEM WITH TWO DOCKING STATIONS 

This appendix derives the maximum number of shuttles in a side loop for a given value 

of D  when two docking stations are in use. 

 

Slots for docking station 1 

Slots for docking station 2 

DT=T 
DT= 2T 

 
Figure 30. Calculation of Q for a system with two docking stations. 

 

As a robot packing operation will have to be performed within its allocated slot, the slot 

period T  remains unchanged.  However, the number of shuttles in each side loop now is 

different from that when of one docking station is used.  Referring to Figure 30, consider 

only docking station 2: 

1. If 1=D , the maximum number of shuttles in side loop 2 is two as only shuttles 

for  and  may be in the loop at 0S 2S 21 ttt <≤ .  But at , only the 

shuttle for  can be in the loop. 

32 ttt <≤

2S

2. If 2=D , the maximum number of shuttles in Side Loop 2 is also equal to two.  

At 21 ttt <≤ , shuttles for  and  can be in the loop.  But at , only 

the shuttle for  can be in the loop. 

0S 2S 32 ttt <≤

2S

 t1

S0 S1 S2 S3 S4 S5 S6 S7 S8 ……………………………………

t2  t3
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3. Consider in the interval of D  slots, we see that if D  is odd, maximum shuttles 

happen when the slot before and after D  slots belongs to docking station 2.  In 

this case, the number of slots within the D  number of slots that belongs to 

docking station 2 is 
2

1−D
.  Hence the maximum shuttles in side loop 2, 

2
3

2
2

1 +
=+

−
=

DD
Q . 

4. If D  is even, the only the slot before or after D  slots belongs to docking station 

2.  There will be exactly 
2
D  slots in any period of D  slots that belongs to 

docking station 2.  Hence, 
2

2
1

2
+

=+=
DDQ . 

 

Summarising the results, the maximum number of shuttles in a side loop at any time is 

given by: 

 +Ζ∈
⎪
⎩

⎪
⎨

⎧

=
+

−=
+

= n
nDD

nDD

Q
2if,

2
2

12if,
2

3
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