
Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

auto-id centre institute for manufacturing, university of cambridge, mill lane, cambridge, cb2 1rx, united kingdom

abstract

This paper extends our previous white paper on our PML Server prototype work. We begin with a brief
review of the Auto-ID infrastructure, then consider the different types of essential data which could be
stored about a tagged physical object or which relate to it. In our data model we distinguish between
data properties at product-class level and at instance-level. Product-class properties such as mass,
dimensions, handling instructions apply to all instances of the product class and therefore need only
be stored once per product class, using a product-level EPC™ class as the lookup key. Instance-level
properties such as expiry date and tracking history are potentially unique for each instance or item
and are logically accessed using the full serialised EPC™ as the lookup key. We then discuss how
a PML Service may use data binding tools to interface with existing business information systems to
access other properties about an object besides the history of RFID read events which were generated
by the Auto-ID infrastructure. The penultimate section analyses complex queries such as product
recalls and how these should be handled by the client as a sequence of simpler sub-queries directed
at various PML services across the supply chain. Finally, we introduce the idea of a registry to co-
ordinate the fragmented PML Services on a supply chain in order to perform tracking and tracing more
efficiently and facilitate a complex query, which requires iterative access to multiple PML Services in
order to complete it.

Mark Harrison, Humberto Moran, James Brusey, Duncan McFarlane

white paper

PML Server Developments

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 1

PML Server Developments
white paper

Biographies

Humberto J Moran
Senior Research Associate

With more than ten years of experience
in information system implementation,
Humberto Moran has occupied relevant
positions in leading corporations such
as Unisys, Lafarge, Oracle, and his own
entrepreneurial venture. He has studied
Computer Engineering – “Universidad
Simon Bolivar”/Caracas; a Ph.D. in
International Economics – “Universidad
Complutense de Madrid”/Madrid;
and an MBA in the Judge Institute of
Management, University of Cambridge.

Mark Harrison
Senior Research Associate

Mark Harrison is a Senior Research
Associate at the Auto-ID Centre lab
in Cambridge working on the develop-
ment of a PML server, web-based
graphical control interfaces and
manufacturing recipe transformation
ideas. In 1995, after completing his
PhD research at the Cavendish
Laboratory, University of Cambridge
on the spectroscopy of semiconducting
polymers, Mark continued to study
these materials further while a
Research Fellow at St. John’s College,
Cambridge and during 18 months at
the Philipps University, Marburg,
Germany. In April 1999, he returned
to Cambridge, where he has worked
for three years as a software engineer
for Cambridge Advanced Electronics/
Internet-Extra, developing internet
applications for collaborative working,
infrastructure for a data synchronisation
service and various automated web
navigation/capture tools. He has also
developed intranet applications for his
former research group in the Physics
department and for an EU R&D network
on flat panel displays.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 2

PML Server Developments
white paper

Biographies

James Brusey
Senior Research Associate

James Brusey previously worked
(for about 13 years) in computer system
administration, specialising in IBM
mainframe assembler. He received a
B.Ap.Sci in Computer Science from
RMIT University (Melbourne, Australia)
in 1996. He began studying autonomous
robot control in 1998 and was a team
member and the main software devel-
oper for RMIT University’s Formula
2000 RoboCup team, which made the
finals in the 2000 games.

James’ Ph.D. is entitled “Reinforcement
Learning for Robot Soccer”. It developed
a novel approach to bootstrapping rein-
forcement learning and also examined
simulation-based reinforcement learning
for a real robot.

Duncan McFarlane
Research Director Europe

Duncan McFarlane is a Senior Lecturer
in Manufacturing Engineering in the
Cambridge University Engineering
Department. He has been involved
in the design and operation of manu-
facturing and control systems for over
fifteen years. He completed a Bachelor
of Engineering degree at Melbourne
University in 1984, a PhD in the control
system design at Cambridge in 1988,
and worked industrially with BHP
Australia in engineering and research
positions between 1980 and 1994.
Dr McFarlane joined the Department
of Engineering at Cambridge in 1995
where his work is focused in the areas
of response and agility strategies for
manufacturing businesses, distributed
(holonic) factory automation and control,
and integration of manufacturing
information systems. He is particularly
interested in the interface between
production automation systems and
manufacturing business processes.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 3

white paper

PML Server Developments

Contents

1. Background .. 4
2. Types of Data.. 5
3. Data Binding Tools for a PML Service .. 7
4. PML Service Applications and Complex Queries .. 8
5. Co-ordinating Multiple Servers Across the Supply Chain.. 10
6. Use of a PML Service Registry for Pro-active Triggering of Product Recalls 15
7. Summary .. 15
8. Acknowledgments .. 16
9. References .. 17

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 4

1. background

The key to the Auto-ID architecture [1] is the Electronic Product Code (EPC™) [2], which extends the
granularity of identity data far beyond that which is currently achieved by most bar code systems in use
today. The EPC™ contains not only the numeric IDs of the manufacturer and product type (also known as
stock-keeping unit or SKU) but also a serial number for each item or instance of a particular product type.
Whereas two apparently identical instances or items of the same product type may today have the same
bar code, they will in future have subtly different EPCs™, which allows each one to have a unique identity
and to be tracked independently.

In order to minimise the costs of Radio Frequency Identification (RFID) tags [3], the Auto-ID Centre advocates
that only a minimal amount of data (the EPC™) should be stored on the tag itself, while the remaining
data about a tagged object should be held on a networked database, with the Electronic Product Code™

(EPC™) being used as a database key to look up the data about a particular tagged object. Within the
Auto-ID infrastructure, the Savant™ [4], Object Name Service (ONS) [5] and PML Service [6] are all networked
databases of some form.

Edge Savants™ interface directly with RFID readers and other sensors and generate Auto-ID event data,
typically consisting of triples of three values (Reader EPC™, Tag EPC™, Timestamp) and an indication
of whether the tag has been ‘added’ or ‘removed’ from the field of the tag readers.

The Object Name Service (ONS) is an extension of the internet Domain Name Service (DNS) [7] and provides
a lookup service to translate an EPC™ number into an internet address where the data can be accessed.

Data about the tagged object is communicated using the Physical Markup Language (PML) [8,9] and the
PML Service provides additional information about the tagged object from network databases. The Physical
Markup Language (PML) does not specify how the data should be stored, only how it should be communicated.
It should be possible for many different types of existing information systems to act as data sources to the
PML Service, and for the data to be queried and communicated using the PML language and by reference to
the PML schema [10] rather than by reference to the particular structure/schema of the various underlying
databases in which the values are actually stored. We described these ideas in a previous white paper [6].

In Section 3 we discuss how data binding tools may allow the PML Service to interface with existing
information systems.

Because of security and privacy concerns, the PML Service will be fragmented across the supply chain,
with each party handling the object being responsible for updating their own internal databases with
information about the tagged object while it is in their custody. Users of the PML Service (clients) outside
the company will only have read-only access to a controlled subset of the data, by querying the company’s
PML service. The company providing the PML service will be able to define precisely which subset of data
each authenticated user or group of users is entitled to access, depending on the business relationship
with the company (e.g. retail partner, logistics partner, etc.).

We envisage that the data content will be derived from both existing business information systems as well
as new Auto-ID tracking event data. The security layer of the PML Service allows each company to control
exactly which subsets of their internal data are exposed through the PML Service, while the authentication
layer of the PML Service allows them to tie different subsets of their data to different users of the PML Service.

Certain complex queries, such as a product recall may need to access fragments of PML data from multiple
servers across the supply chain. In Section 5, we discuss how we might use a registry to co-ordinate the
navigation between PML servers to facilitate such complex queries.

We now discuss types of data related to tagged objects and how this classification helps when analysing
complex queries which operate on multiple PML Services.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 5

2. types of data

Besides the different database structures (e.g. XML [11] product catalogs, relational databases (SQL)
[12] and directory services), in which the underlying data may be physically stored, there are several
fundamentally different types of data associated with an object and also several types of queries we
might want to make. Table 1 provides examples of a number of types of data related to an object.

In some cases, we want to obtain properties that are common to all unique instances of the product
class. An example may be the mass or dimensions. In other cases, we may want to access properties
whose values differ for different instances of the product – e.g. the expiry date. For improved visibility
of the supply chain, we certainly need to be able to access instance-level tracking data – i.e. the history
of the tagged object – which readers it passed and when.

Table 1: Types of data
related to tagged objects

data explanation update how # of keys data source

type frequency distributed

Class-level
Manufacturer’s
data

Serial-level
Manufacturer’s
data

Serial-level
tracking/
sensor data

Transactions

Location-
centric data

fairly static

fairly static
but updated
for different
batches

very dynamic

fairly static

very dynamic

single server

single server

multiple servers
+ registries?

multiple
existing
business
information
systems

multiple reader
locations – one
server per
cluster/building?

product
catalog data

existing
business
information
systems
– instance-level
access may
be lacking

Savant™

existing business
information
systems,
as data source
and persistent
repository

Savant™

small

large
(up to one key
per instance
per product)

very large
(up to one per
key per instance
per product type
per custodian)

moderate
key is the
document
ID – but the
document itself
may refer to
multiple EPC™s

one key per
reader EPC™

a.k.a. ‘Product-level data’
standard properties and
procedures applying to
all instances of the same
product type

e.g. mass, dimensions,
instructions on safety,
handling, care, usage etc.

Instance-specific data
which either
– is not defined at

product-level
– overrides values

defined at product-level

e.g. lot control, expiry date,
customisation parameters

object-centric track and
trace data ‘Where was the
object O at time T?’

e.g. (location, time, identity)
– Auto-ID and sensory event

data + timestamped
sensor data (e.g. tem-
perature, humidity...)

– changes of custody
– change of aggregation state

(packing, palletisation,
embedding within a
compound/composite product)

– change of EPC™ to track
(e.g. track pallet super-tag

business documents
which refer to EPCs™

e.g. advance shipping
notices, purchase orders
bills of lading etc.

which tag EPCs™ were
seen by reader R at
location X in time
range T1–T2?

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 6

As we discussed in our previous paper, we envisage that simple PML queries will use two parameters:

1. the EPC™ – identifies the tagged object of interest
2. a pathname which identifies the property of interest within the PML Schema. The pathname may be

an XQL [13] or XPath [14] expression or a Java bean accessor method [e.g. getMass()] [15]

If we specify the full EPC™, including the serial number bits, a simple query should return the property
if it is defined in the instance-level data. If the property is not defined in the instance-level data, the PML
Service should automatically perform a bitmask operation on the EPC™ to set the serial number bits to
zero, as illustrated in Figure 1, then retry the query. In this case, the property defined at the product-class
level would be returned instead.

Of course, the client could have supplied a bitmasked class-level EPC™ in the first place if the property
is known or considered to be the same for all instances of the product. This ‘fall-through’ from instance-
level data to the corresponding product-class data is illustrated in Figure 2.

Figure 1: Bitmasking of an instance-
level Type I EPC™ to obtain an EPC™

class for all items of that product class.

Specific unique Item-level EPC™

Bitmask to ‘zero’ serial number bits

Generic Product-level EPC™

0000000A1000001000000DDD

000000000

0000000A1000001000000000

epc™ bitmasking of serial number bits

4 data translation layer

3 security layer

1 external query

2 query layer

6 instance-level data

8 product-level data

internal query

or update from

within the company

5

7

pml service

existing

database

system

(xml and/or

sql)

9

elements of a pml server
Figure 2: Schematic structure of a PML
server, indicating ‘fall-through’ to return
product-level data where a particular
property is not defined at instance-level.

1 From outside the company
2 Returns PML subset or fragment

given an EPC™ and XML Path or
Java bean accessor method

3 (checks user’s access rights to a
particular subset of the PML data tree

4 (maps XML & RDBMS to PML Schema)
(– both the query and the
returned data)

5 Product-level data can be accessed
directly if a product-level EPC™

is specified
6 XML or Relational Database Tables
7 ‘Fall-through’ to product-level

data where instance-level
data is not defined

8 XML or Relational Database Tables
9 (including data from Savant™)

(using existing SQL methods)

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 7

We suggest that the class-level EPC™ (see Figure 1) referring to all instances/items of a particular product
class should have the same number of digits as the corresponding instance-level serialised EPC™, rather
than being represented as a truncated EPC™ prefix. This avoids any ambiguity about whether a truncated
EPC™ prefix should be left-padded or right-padded with zeros or which ranges of bits correspond to which
data partition and has the advantage that the class-level EPC™ could be stored in the same database
column or field as a regular serialised instance-level EPC™. Furthermore, the use of all zeroes in the serial
number partition clearly marks the class-level EPC™ as being special and distinct from instance- level EPCs™;
conversely, the serial number consisting of all bits set to zero should be reserved for this use – to indicate
or access product-level data; serial numbers should therefore begin incrementing from 1 upwards – not
from zero upwards.

Not all of our queries will use the object’s EPC™ as the database key. Sometimes our query uses another
lookup parameter, such as a particular transaction number or a particular location or reader EPC™ and
obtains a list of EPCs™ as the response.

We may have the transaction ID of a particular business document, such as a purchase order or advance
shipping notice, which itself refers to or contains several EPCs™ within the document.

We may also have to deal with location-centric queries, e.g. in the case of a product recall, once we have
established the location where the defects or contamination occurred, we then want to be able to query
the reader at that location for all EPCs™ which it observed until the problem was rectified, so that we can
then trace their current location and alert the retail outlets and logistics companies.

Table 1 attempts to classify some of these fundamental data types and also provides some indications
about how static or dynamic each type of data may be, as well as how many separate servers may hold
such data and how many keys are needed to access the data. Such considerations are a factor in the
determination of the appropriate type of underlying database for persistent storage of the data.

3. data binding tools for a pml service

The PML Service is intended to be a common global interface for queries about tagged physical objects.
Auto-ID produces a large volume of new Auto-ID event data with instance-level tracking granularity.
In many cases, this may require companies to re-evaluate their current database architecture, especially
if they intend to archive such Auto-ID event data for auditing and tracing purposes into the future.

EPC™ data from readers is filtered by low-level Savants™ and is then pushed out to either higher-level
internal Savants™ or other databases for longer-term storage.

Object-centric PML Services should be able to provide the tracking history for a particular object, in terms
of the reader EPCs™ and timestamps as the object passed through a particular custodian’s part of the supply
chain. Object-centric PML Services answer the question ‘where was object O in the time range T1 – T2?’

Location-centric PML Services group the Auto-ID event data for particular readers or locations and
instead provide an observation history of the tag EPCs™ observed and the timestamps at which they
were added or removed from the reader’s field. Location-centric PML Services answer the question
‘which objects were seen at location L/by reader R in the time range T1 – T2?’

Furthermore, the object-centric PML Service may also provide other types of common data about an
object, drawn from other existing information systems as their data sources. It is not intended that the

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 8

Physical Markup Language should necessarily subsume all other markup languages developed for
specific industry sectors [16] – but rather that it initially focuses on Auto-ID event data and a limited
number of fundamental properties which are essential for supply chain logistics, shipping and storage
management. Such properties may include the mass, dimensions, description, safety/handling
instructions, date of manufacture, expiry date, etc.

While the Auto-ID event data is well defined in terms of the PML Core schema and originates primarily
from systems implementing the Savant™ interface, the other types of object-centric data come from a
variety of database types and vendors.

If the PML Service is to provide accurate, up-to-date information, while still presenting a global common
interface for queries, the PML Service implementation needs to use data binding tools [17] to connect
the other data sources to the PML interface in real time. This allows the companies to continue to use
their existing information systems internally, just as before, while the PML Service uses data binding
tools to extract particular types of data from these existing systems, without revealing the addresses,
connections or internal structure of those sources to the authenticated end-user client of the PML
Service. For security or efficiency reasons, the PML Service may actually interface to internal replicas
of the operational databases, rather than directly to the main operational databases of a company,
although it should be remembered that replica databases may not be as up-to-date as the original
operational databases.

Fortunately, sophisticated data binding tools already exist. Castor (an open source data binding project
from Exolab.org) [18] provides data binding between Java bean objects and either XML representation,
or persistence in relational databases (RDBMS/SQL) or LDAP [19] directory services. JAXB [20] and JDO
[21], free data binding tools from Sun Microsystems, also provide similar capabilities. Data binding tools
make use of XML Schema [10] to generate Java bean objects [15], which can have a hierarchical set of
properties which can be queried or updated using get() and set() methods.

Database connector files can be used to specify which relational databases to connect to, and which
database user-ID to use for login. Mapping files describe the mapping between particular Java bean
classes and their properties and the corresponding tables and fields (column names) in a relational
database structure. Mapping files can also be used to override the default XML <-> Java bean mapping,
for example where inline attributes of elements are used in preference to child elements in the XML
(or PML) markup.

Therefore, data binding tools allow each company to control precisely which database tables and fields
are exposed for the PML Service, to set up particular database users with read-only access to specific
tables and fields, so that different access rights or views of the data can be given to different authenticated
users, depending on the business relationship they have with that company.

In addition to the security restrictions which the data binding tools can impose, further access control
tools such as XACL [22] and XACML [23] allow companies to precisely define access control rules and
policies, and associate these policies with particular users, depending on their role or relationship.

4. pml service applications and complex queries

A company may provide its own internal staff and systems with a local internal PML Service which stores
relevant cached data obtained from remote PML Services outside the company, much as a web proxy
server or cache stores frequently requested files to reduce the amount of external traffic.

However, the external PML Service provided by a company will usually only provide data which is held
by that company. The service will not normally be expected to masquerade as the client and obtain data
from other remote PML Services in order to more fully answer the query from a client. It will usually be
the responsibility of the client or client application to iteratively contact other servers for further data.
The client application is to a PML Service the equivalent of a web browser interacting with a webserver.
A web browser displays a composite image of a web page, although some of the data may have been
obtained from web servers other than the one specified in the browser’s address bar. For example, the
HTML markup [24] of a news page on a website may use references to include image files from another
source website. When the client application notices that the server it initially contacts is not able to
provide all of the information required for the composite view, it iteratively contacts the other servers
holding the additional data, in order to build the composite view for the user.

Client applications of PML Services are likely to need to behave similarly and may also need to iteratively
issue sub-queries to multiple PML servers across the supply chain in order to obtain all the data required
to answer complex queries. However, whereas HTML is a display markup language and the person who
writes the web page has a particular composite display in mind, PML is a data exchange markup language
and no server has any notion of displaying a comprehensive ‘composite view’ of all the PML data, nor any
motivation to do so. In fact, it is preferable that they supply as little data as possible, returning only the
PML fragment required.

Furthermore, the majority of PML data is likely to be available only to particular groups of trusted authen-
ticated users. Each client may use different authentication tokens (user-IDs, digital certificates etc.) to log
into different PML Services, showing each PML Service only the appropriate authentication token and hiding
the others. Therefore, each service would be unable to masquerade as the client to obtain additional
data from other services outside of that company, since only the client retains the authentication tokens
for accessing that data. We see that also from this authentication perspective, only the client can build
the composite view or perform the complex query using all the data that the client is allowed to see.

Table 2 lists a number of queries which might be asked, outlining the query parameters and expected
results, as well as the appropriate service to query at each stage. Complex queries are considered as an
iterative sequence of sub-queries directed to the appropriate services in turn.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 9

5. co-ordinating multiple servers across

the supply chain

The analogy with the web browser and webserver is useful, although it must be remembered that there
is a clear difference for the PML Service. Someone designs a web page with a composite view in mind for
a human observer to read, even though the elements of the page may be drawn from multiple servers.
The PML Service is not designed to produce such a composite view. Unlike a static web page, the response
from a PML Service depends on the query which was asked and typically consists of just a particular
relevant fragment of the whole PML data which exists about a given object, in order to minimise bandwidth
usage and reduce the need for the client to parse vast amounts of markup data when only a small fragment
is required as the response.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 10

Table 2: Types of queries
for PML Services

query parameter data required pml service

supplied to query from query to query

What sort of object
is this EPC™?

Where is my
object now?

Which path did
it take?

Where was it
delayed?

I need to calculate
shipping costs. How
much does it weigh?

I need to allocate
storage space. What
are its dimensions?

My object was
contaminated.
Where did this
happen and which
other types of
product crossed
paths or were
co-located with
my object?

We know that all
objects which passed
through location L in
time range T1–T2
may be defective.
Where are they now?

Product-class EPC™

or
Instance-level EPC™

Instance-level EPC™

Instance-level EPC™

Instance-level EPC™

Product-class EPC™

or
Instance-level EPC™

Product-class EPC™

or
Instance-level EPC™

Instance-level EPC™

then
Reader EPCs™,
timestamp ranges
then
‘foreign’ EPCs™

at Instance-level or
Product-class level

Reader EPCs™,
timestamp ranges
then Instance-level
EPC™

product-class description
unless superseded by
instance-level description

ID of latest custodian

sequential list of IDs of
all custodians

sequential list of IDs of all
custodians with arrival/
departure timestamps

product-class mass
unless superseded by
instance-level mass

product-class dimensions
unless superseded by
instance-level dimensions

sequential timestamped
list of all reader EPCs™

which saw my object
then for each reader
list of other EPCs™ seen
within the same time
range then for each
‘foreign’ EPC™

description of product
type of ‘foreign’ EPC™

list of all tag EPCs™

which were seen by
those readers
then for each tag EPC™

sequential list of
subsequent custodians

manufacturer’s
public-domain PML
descriptions

navigation to custodians
then PML service of last
custodian

navigation to custodians
and optionally PML
services of custodians

navigation to custodians
then internal trace
history within a particular
custodian’s data

manufacturer’s public-
domain PML descriptions

manufacturer’s public-
domain PML descriptions

navigation to custodians
then
location-centric PML
services
then
manufacturers’ PML
descriptions of products
which crossed paths

location-centric
PML services
then
navigation to
subsequent
custodians

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 11

Since the PML Service has neither the capability nor any self-interest to provide a composite view of
all the data for a human observer, the client application needs to make use of the object name service
(ONS) to locate at least one network address, then use some additional means for navigating across
the supply chain to find all the PML Services which may hold the required data about a given EPC™.

The ONS is built on the Domain Name Service and converts an EPC™ number into an IP address.
However, efficiency and scalability require that it does so algorithmically, keeping the number of unique
database keys to a minimum, rather than keeping a separate record for each of the several trillion items
produced each year, which would rapidly slow down the database lookup. The Domain Name Service
(DNS) upon which ONS is built, is robust but not really intended for dynamic updating, since updates to
DNS itself typically take a number of days to propagate across the internet until all other DNS servers
worldwide reflect the update. Furthermore, a typical DNS entry points to a particular primary IP address
or cluster of addresses, sometimes with secondary addresses or tertiary addresses for backup or when
the primary address is unreachable, with the secondary or tertiary addresses usually providing replicas
or mirrors of the same information held at the primary address.

The situation of PML data fragmented across the supply chain is somewhat different, since although
each company may hold some data relevant to a particular EPC™, each holds a different set of data,
collected while the object was in their custody, rather than each holding a replica of each other’s data.
Furthermore, supply chain logistics are likely to become increasingly dynamic and flexible, so that the
logistics paths along the supply chain are neither fixed nor pre-determined but use the benefit of real-
time high-granularity Auto-ID data correlated with other sensory data to reschedule and re-route in
real time, either to meet the demands of the customer and deal with rush orders, or to ensure that
perishable goods reach customers in optimal condition.

The ONS provides a scalable lookup service but it is not intended that its records will by dynamically
modified as objects pass from one company to another along the supply chain, although it is clearly
necessary that something else provides real-time dynamically updateable directions to all the various
PML Services which may hold data about the object.

So long as the tag remains attached to the object and the EPC™ transmitted by the tag is immutable,
then the ONS will almost always point to one particular address throughout the life of the object, or at
least up to point-of-sale, when the tag may be deactivated. We call the address pointed to by the ONS
the primary address. This means that we must have another mechanism for recording the times when
the custody of the object changed or when an object undergoes aggregation or disaggregation.

The essential data which is needed to record change of custody is:

– Object ID (EPC™)
– Arrival or release time
– Identity of the next custodian of the object

(either as a virtual EPC™ [25] or network address)

When one object is combined with another object to assemble a higher-level composite product with a
different EPC™ tag, we can consider this as a form of aggregation. The reverse process, breaking down a
composite object into smaller components is a form of disaggregation. Just as it is important to record
change of custody, it is also important to record the next EPC™(s) to track after an aggregation/disaggregation
procedure. The data which is needed to continue tracking an item after aggregation or disaggregation is:

– Object ID (EPC™)
– Time of assembly or disassembly
– A list of the next EPCs™ to track – either the composite product or the broken-down components

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 12

When objects are deliberately aggregated into a pallet or container or broken down into smaller units,
verification and subsequent recording of this change of containment in the data should reduce the potential
for errors when inferring from readings of only some of the tags present in the aggregate or container.

So far, we can conceive of two alternative methods by which such changes of custody or containment
can be recorded. Both have potential advantages and disadvantages:

The first method is for each server to simply provide forward and reverse links embedded within their
own PML data to point to the previous and next custodian, who may also hold relevant data on that
EPC™. It would then be possible to trace the movement of the object along the supply chain by daisy-
chaining these together, contacting each PML Service in sequence until the end of the chain is reached,
indicating the current custodian. This approach may appear to be more secure, since there is no central
registry holding data about flows of goods, which is commercially sensitive information. However, this
method is less efficient for the client, since the client needs to interrogate each server in turn just to
navigate along the supply chain for basic tracking and trace applications. Furthermore, the method is not
robust when one of the servers on the chain fails to provide onward directions, either due to temporary
network connectivity problems or as a result of a political disagreement between parties on the chain.

Our preferred approach is to use a secure registry to hold a real-time updateable sequential record of all
of the custodians which have handled a particular EPC™, together with their identity or internet address
and perhaps also the timestamps of when the object arrived with them and when it subsequently left
their custody. This approach overcomes the problem of a weak link in the former approach, although this
means that the registry clearly needs to be resilient (i.e. replicated and probably also distributed) and
secure, providing the navigational links to valid authenticated users only on a ‘need to know’ basis.
Each custodian handling the object would have authorisation to send an update record to the registry
to notify the arrival or release of the tagged object. To reduce bandwidth usage, it should be possible
for the update message to contain several EPCs™ of the same product type, where they were all received
or despatched at the same time.

This method should also provide much faster tracking and tracing capabilities, since it reduces the need
to contact several PML servers individually to determine the current custodian of an object or the path
taken. The registry can supply this information directly. Indeed, the registry could even provide tracking or
trace functions as part of its core functionality. Both functions would take an EPC™ as the input parameter.
The trace function could return an audit trail consisting of a sequential list of network addresses for the
PML services of the custodians and the corresponding EPCs™ to query at each custodian. The tracking
function would merely provide the last entry of this list, to indicate the current or last custodian of the
tagged physical object.

Finally, the client can choose to contact the last custodian in the sequence to obtain more detailed spatial
information, such as which shelf of a retail store holds the object. It seems logical to consider the registry
as a separate entity from that of the PML Service, since it holds very specific information about arrivals,
departures, custodian addresses and could be implemented with a single relational database as its
persistent storage and a small number of well-defined methods for efficiently performing tracking and
tracing operations on an EPC™ specified by the client. Where a registry approach is deployed to co-
ordinate PML services in a particular supply chain, it may be more appropriate for the network address
returned by an ONS lookup of an EPC™ to point directly to the address of the registry, rather than the
first PML service on that chain. We illustrate this approach in Figure 3. The issue of who owns or should
pay for the secure registry lies outside the scope of this paper; this may vary for different industry
sectors, especially for those industries which are highly regulated by government or require very high
levels of traceability.

company a company b

time

product

flow

company c company d

onsepc™

pml serverpml server pml server pml server

ONS Lookup

Read, Update Read, Update Read, Update Read, Update

ReadRead ReadRead ReadRead

t1 t2 t3 t4 t5 t6 t7 t8

in out in out in out in out

1 (EPC, t1, A) (EPC, t2, A)
(EPC, t3, B) (EPC, t4, B)

(EPC, t5, C) (EPC, t6, C)
(EPC, t7, D) (EPC, t8, D)

2
3
4

registry for a particular range of epcs™

Update
Registry

on Arrival

Update
Registry
on Release

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 13

Apart from tracking and tracing applications, product recalls and return logistics are probably the most
complex, demanding types of query which may need access across the whole of the supply chain. Even
within product recalls, there will be differences between industry sectors about the urgency of a product
recall – whether the defect or contamination is potentially hazardous or life-threatening, in the case of
the food and pharmaceutical industries – or has merely resulted in a functionally defective product where
the defect itself poses no immediate danger, but the product fails to meet its intended purpose, specifi-
cations or expected durability. Such considerations, together with regulatory legislation will determine
which method of navigating along the supply chain is acceptable, balancing the urgency of the recall
against commercial sensitivity about a third-party registry holding sensitive data about flows of goods.

We do not preclude that the details listed above could also be stored locally by each company, or that
they could appear within the PML markup for the data. However, we advocate that the registry should be
separate from the PML services, since the registry is updated by several approved parties, whereas the
PML service usually provides only a read-only view to clients outside the company. We also recommend
validation of the incoming registry updates from third parties, to check that the authenticated sender has
authority to access the registry and also to verify that the data is as expected – i.e. that its parameters
contain an EPC™, an arrival/release time and the indentifier of the next custodian, all in the correct data
type and format.

The registry allows us to know which party to contact to obtain the PML data stored about an object within
a given timeframe. A further refinement would be to know which party to contact about a particular type
of property or measurement of the object, such as its temperature. Technically, this could be achieved if
upon release of the object, each party sends an empty PML Schema along with the release time etc. back
to the registry. The empty PML Schema they send would not contain any data values but could indicate
which fields of the data they had updated and would therefore give authorised users of the registry an
immediate indication of which servers to contact directly in order to obtain that data, rather than having
to query each one in turn. There may be commercial reasons why companies may prefer not to publish
(some parts of) the empty PML schema representing the nature of the data they hold about the object
– but that discussion lies outside the scope of this paper.

Figure 3: Simplified network diagram
showing how a registry could be used
to co-ordinate navigation between
PML services on a supply chain.
Each registry would handle a particular
range of EPCs and would be pointed
to by the ONS lookup. Each party on
the chain would send a short secure
message to the registry to notify receipt
or release of the tagged object(s).
The registry could then be queried on
a ‘need-to-know’ basis to determine
who is the current custodian, which
path was taken by the object, as well
as facilitating product recalls.

= Data packet:

– EPC™
– Arrival/release time
– Custodian ID
– EPC™ to track in future

(Empty Schema of type
of data stored)

co-ordinating pml services across a supply chain using a registry

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 14

Our preferred model for coordinating a supply chain of PML servers and joining together the data fragments
when the need arises is to maintain a separate registry whose network address is indicated by the ONS
lookup of the object’s EPC™. The registry should always be reachable and for each EPC™ it handles, it
should hold sequential records of arrival time, release time and next custodian, to facilitate complex,
iterative queries where necessary. From a technical perspective, storage of empty PML schemas provided
by each custodian upon release of the object would facilitate identification of which party to contact for
data of a particular type, as well as within a particular timeframe.

We consider that the registry offers several benefits when co-ordinating a number of related PML services
in the supply chain, as listed in Table 3.

Table 3: Benefits of the proposed
registry model for co-ordinating
multiple PML services in a supply
chain, where each PML service only
holds a fragment of the object’s
PML data, collected while the
object was in their custody.

advantages of a co-ordination registry

By maintaining a registry to maintain knowledge of the time interval when each
company had custody of the object and potentially also store the types of properties
held at each member of the chain, we avoid the need to query each server in turn
just to check if they hold the data required by our query. Track and trace could be
core functionality provided by the registry.

The registry points to each member of the chain. This is more robust than if each
link on the chain only maintained a forward and reverse link to its immediate
neighbours, since navigation along the chain would be interrupted if any of the
intermediate links of the chain were unreachable.

The registry does not prescribe who (e.g. manufacturer, retailer, third party) must
host it. The choice of the EPC number determines this, since the registry is
whichever network address is pointed to by the ONS lookup of the EPC. The protocol
we propose is identical for all members of the chain – they notify the registry on
arrival/release of an object and otherwise perform their actions on the object,
updating their own records about the object while it is in their custody.

Another aspect of the flexibility is that companies can continue to use their existing
relational databases, with the addition of extra tables and fields for recording
instance-level data. They can continue using the well established SQL protocol for
querying and updating their own data. The additional infrastructure required for
the PML service is predominantly an XML-based interface for dealing with external
queries and mapping these to controlled portions of the database.

The registry avoids any need for companies to update each other’s PML data
– they continue as at present, updating their own records about the product data
and merely send a data packet with arrival/release timestamps to the registry to
facilitate traceability along the chain. All external requests to PML servers are by
definition queries rather than updates.

So long as the registry for each chain is guaranteed to be always online, having
redundant servers, alternative network connectivity and backup power supplies,
then queries across the supply chain can continue. If one of the other PML servers
is temporarily unavailable, then either previously cached data can be used and/or
the query can be queued for retry later.

efficiency

robustness

flexibility

security

reliability

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 15

6. use of a pml service registry for pro-active

triggering of product recalls

The much finer granularity of instance-level product data together with real-time object tracking enabled
by Auto-ID technology should facilitate more rapid product recall where the need arises, together with
marked reductions in wastage since the unsafe goods can be identified individually by their EPCs™

rather than by the batch ID of a particular pallet or case. Meanwhile, the instance-level tracking history
data should assist with diagnosis of why the product recall was necessary and when and where the
problem (e.g. contamination, defective processing, unsafe storage temperature) occurred.

In the previous section we proposed an approach in which a registry (as identified by the ONS lookup of
the EPC™) is updated upon arrival and release of the object. Arrival and release times are very important
opportunities for checking whether the products being handed over are already marked for product recall
and if so, triggering an alert and invoking an alternative course of action for the problem objects, once
they have been identified and removed.

We propose that a logical place to record that a particular product is marked for recall is in a dedicated
database table within the registry which handles that EPC™ range. With the EPC™ or an EPC™ pattern
acting as the database key, a simple one-bit field could be used to flag an alert, while a further field
could provide additional information, such as the address of a web page for further information. If this
product recall database table were automatically queried at the same time as the registry is being
updated with the arrival/release times, then we have the opportunity to use the response of the
incoming registry update to send a return value listing any EPCs™ which are marked for product recall
and providing the web addresses for additional information. Further enhancements are possible, so that
the additional information is customised to provide relevant (context-sensitive) information on how to
deal with the object’s product recall, depending on the party’s role in the supply chain, whether a
supplier, manufacturer, distributor or retailer.

7. summary

– The PML Service provides clients with access to data about tagged objects by using an open,
global markup language and a hierarchical PML schema.

– Clients can query the PML Service using an EPC™ to identify a tagged object and a pathname
(or equivalent Java bean accessor method) to specify the property of interest within the PML schema.

– The PML Service should be able to supply data from various sources, including Auto-ID event data
from Savant™ and product data from existing information systems, all using the PML schema interface,
thus hiding the internal connections and structure of the underlying database sources from the client
using the PML Service.

– PML Service implementations may use data binding technologies such as Castor, JAXB, JDO to connect
the PML Service interface to existing corporate data sources and to restrict the data exposed via the
PML Service to a subset of their internal data, which they are prepared to release to trusted partners.

– The PML Service will generally support authenticated access but may also support public or anonymous
access. The PML Service should be able to differentiate between authenticated users on the basis of
groups or roles reflecting their relationship with the company and should be able to expose a different
subset of data to them, accordingly.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 16

– Each company which handles a tagged object is expected to update records in their own data systems
about location tracking, measurements and actions performed on the object while it is in their custody.
The PML Service is used to selectively expose a company-defined subset of these records to a particular
trusted partner.

– The external PML Service exposed by a company will normally be read-only to clients outside the
company, so external updates will not normally be allowed through the PML Service interface.

– The comprehensive PML data about a tagged object will not normally exist on a single server,
but will instead be fragmented across several parties on the supply chain who have handled
the tagged object – we call these custodians.

– The number and sequence of custodians for a given EPC™ will change over time more rapidly than
typical changes to DNS entries take to propagate. Furthermore, ONS is not intended to be
updated frequently.

– For robustness, we advocate the use of a secure registry to hold a sequential list of all custodians
for a given EPC™. This will greatly facilitate track and trace applications, as well as more complex
queries needed for product recalls etc.

– Complex queries may require the client to iteratively send sub-queries to multiple PML Services
and the registry, as necessary, each time authenticating with the appropriate authentication token
(e.g. user-ID, digital certificate).

– The PML Service is not normally expected to perform complex iterative queries on behalf of a client,
nor to masquerade as that client in order to obtain additional data from other services on behalf of
the client making the initial query.

– Performing complex queries remains the role of the client – not the PML Service. It suffices that a
company’s PML Service merely provides access to the subset of the company’s data about the tagged
object, which the company is prepared to expose to its authenticated trusted partners.

– The registry may also be an appropriate place to store flags to indicate that a product should be
recalled or to store metadata or an empty PML schema to indicate the type of data provided by
each PML Service.

8. acknowledgments

We are grateful for fruitful discussions with our colleagues within the Auto-ID Centre labs, Sun
Microsystems and the PML Software Action Group.

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 17

9. references

1. S. Sarma, D. L. Brock & K. Ashton, “The Networked Physical World – Proposals for Engineering
The Next Generation of Computing, Commerce & Automatic Identification”.
October 2000, http://www.autoidcenter.org/research/MIT-AUTOID-WH-001.pdf

2. D. L. Brock, “Electronic Product Code™ (EPC™) – A Naming Scheme for Physical Objects”.
January 2001, http://www.autoidcenter.org/research/MIT-AUTOID-WH-002.pdf

3. S. Sarma, “Towards the 5¢ Tag”.
November 2001, http://www.autoidcenter.org/research/MIT-AUTOID-WH-006.pdf

4 Oat Systems & MIT Auto-ID Center, “The Savant™ – Version 0.1 (Alpha)”.
February 2002, http://www.autoidcenter.org/research/MIT-AUTOID-TM-003.pdf

5 Oat Systems & MIT Auto-ID Center, “The Object Name Service (ONS) – Version 0.5 (Beta)”.
February 2002, http://www.autoidcenter.org/research/MIT-AUTOID-TM-004.pdf

6. M. Harrison & D. McFarlane, “Development of a Prototype PML Server for an Auto-ID Enabled
Robotic Manufacturing Environment”.
February 2003, http://www.autoidcenter.org/research/CAM-AUTOID-WH010.pdf

7. Domain Name Service
for more information see links at http://www.dns.net/dnsrd/

8. D. L. Brock, “The Physical Markup Language (PML) – A Universal Language for Physical Objects”.
February 2001, http://www.autoidcenter.org/research/MIT-AUTOID-WH-003.pdf

9. D. L. Brock, T. P. Milne, Y. Y. Kang & B. Lewis, “The Physical Markup Language”.
June 2001, http://www.autoidcenter.org/research/MIT-AUTOID-WH-005.pdf

10. XML Schema
http://www.w3.org/XML/Schema

11. XML – extensible Markup Language
http://www.w3.org/XML/

12. Structured Query Language (SQL)
see also http://www.sql.org

13. XPath – XML Path Language
http://www.w3.org/TR/xpath

14. XQL – XML Query Language
http://www.w3.org/TandS/QL/QL98/pp/xql.html

15. Java beans and accessor methods
http://java.sun.com/products/javabeans/

16. For details of XML markup languages for various sectors of industry, see
http://web.mit.edu/mecheng/pml/standards.htm

Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003.

CAM-AUTOID-WH-015 ©2003 Copyright 18

17. Many commercial relational databases are developing translation layers for mapping between
XML and relational database queries.
For further examples of translation layers for interfacing between SQL and XML Schemas, see also:
http://developer.netspective.com/xif.html and
http://zsqlml.sourceforge.net

18. Castor data binding project from Exolab
http://castor.exolab.org

19. Lightweight Directory Access Protocol (LDAP)
http://www.openldap.org, http://www.ldapman.org and http://www.rage.net/ldap/links.shtml

20. Java Architecture for XML Binding (JAXB)
http://java.sun.com/xml/jaxb/

21. Java Data Objects (JDO)
http://java.sun.com/products/jdo/

22. XML Access Control Language (XACL)
http://www.trl.ibm.com/projects/xml/xacl/

23. XML Access Control Markup Language (XACML)
http://www.oasis-open.org/committees/xacml/

24. HTML – Hypertext Markup Language
http://www.w3.org/Markup/

25. D. L. Brock, “The Virtual Electronic Product Code™ ”.
February 2002, http://www.autoidcenter.org/research/MIT-AUTOID-WH-011.pdf

De
si

gn
ed

 b
y

Fo
xn

er
. w

w
w

.fo
xn

er
.c

om

