
Pervasive Adaptation for Mobile Computing

Tim Edmonds� Steve Hodges� Andy Hopper���

� Laboratory for Communications Engineering
Department of Engineering
University of Cambridge

Cambridge, UK
tme23@eng.cam.ac.uk

� AT&T Laboratories Cambridge
24a Trumpington St

Cambridge, UK
�seh,ah�@uk.research.att.com

Abstract

Mobile Computing platforms such as mobile phones,
PDAs or wearable computers operate in a much more
volatile and limited environment than their stationary coun-
terparts. Such platforms are inherently resource poor and
subject to highly changeable resource availability. Appli-
cations for Mobile Computing require adaptation for best
performance under such variable conditions, to make best
use of available resources without assuming the minimum
set.

This paper details a framework developed by the authors
for developing and deploying mobile applications. Current
systems are able to notify an application to adapt but fail
to say how. The application author must provide the ac-
tual adaptation mechanism. The authors aim to provide
automatic adaptation to suitably constructed mobile appli-
cations. The adaptation mechanism is pervasive through
application and system layers providing tight integration of
adaptation both vertically (through an application) and hor-
izontally (between applications).

1 Introduction

Mobile computing situates applications in an environ-
ment rich in resources and services but poor in resource
availability or predictability. Applications that wish to make
best use of available resources under such variable condi-
tions without assuming the minimum set must adapt.

Typically, adaptation for mobile applications involves
trade-offs: varying an application’s quality of operation or
even locality of operation to fit the current resource pro-
file. The most common resource triggering adaptation in
current applications is communications bandwidth as it is
typically the most limiting and unpredictable resource in

the system, particularly in the case of wireless communi-
cations systems. CPU capacity, memory availability and
battery power are other adaptation criteria.

There exists many research application frameworks
such as Odyssey[8, 6] or Hild’s Mobile Application
Framework[3] which provide adaptation services to mobile
applications. However, these services, while providing mi-
gration capabilities and adaptation hints to applications, fail
to instruct the application exactly how to adapt; the appli-
cation author must themselves provide the mechanism by
which the application can adapt.

In this paper, the authors present the DPROJ framework:
an application construction kit and runtime system which
enables automatic pervasive adaptation for mobile applica-
tions. The following sections describe the mobile operat-
ing environment, the applications expected to operate in the
environment and presents a taxonomy of adaptation mech-
anisms. This is followed by a description of the DPROJ

framework and applications.

2 Design Issues

Abstracting away from the implementation or environ-
ment details for distributed and mobile systems can greatly
reduce the reliability and stability of an application[9] when
the abstracting middleware is unable to account for factors
such as disconnection or latency. Practical design of mobile
applications must consider the special circumstances of the
mobile computing environment both to cover unfortunate
circumstances but also to best take advantage of available
resources when they should become available.

Constructing individual, isolated, stationary applications
is well understood; constructing applications that operate
in a mostly connected distributed environment in which re-
sources must be shared and may change offers considerably
greater challenge. There are several key design principles

1



that must be considered when constructing mobile applica-
tions and systems:

Principle 2.1 (Diversity): Mobile devices will be
called upon to execute a large range of applications
concurrently over a large range of conditions.

Current devices assume that the user only requires to per-
form one operation at any one time and so mobile phones
and PDAs often run simple operating systems that only run
and present a single application at a time. Future applica-
tions may be more passive, pervasive and hence will require
that multiple such applications be run concurrently on a sin-
gle device or single resource set. Additionally:

Principle 2.2 (Adaptation): To perform such opera-
tion efficiently, adaptation is required[5, 7].

Connected mobile devices have access to resources be-
yond the device itself in the form of remote data and remote
services. An application that uses such remote services is a
distributed mobile application. Using remote resources can
greatly enhance the capabilities of a mobile application but
at the same time, the limitations of the mobile infrastructure
means that the application must be able to cope with poor
connectivity (up to and including disconnected operation),
flagging resources (battery or CPU), and insecurity (mobile
devices are much more susceptible to theft or security vio-
lations than their stationary counterparts)[8]. In particular,
locality of data, locality of processing and locality of control
must be resolved consistently.

Intermittent connectivity means that if data is to be ac-
cessible at all times, it must reside on the device itself. On
the other hand, the mobile device is small, limited and vul-
nerable — only small data sets can reside on the device. The
device may only manipulate restricted data sets and employ
external facilities for more data. Additionally, maintain-
ing data access and consistency (in the case of shared data)
through disconnection become major issues.

Principle 2.3 (Data Locality): Essential data must
be held locally. Extended data sets may be held re-
motely.

As for data, provision must be made for processing
within the isolated case without restricting operation to ex-
clude the advantages of connectivity to external facilities.
However, some applications rely on a remote data source
(eg: media streaming) in which case operation in a discon-
nected environment is meaningless.

Principle 2.4 (Process Locality): A mobile device
must be self-sufficient for the minimum of process-
ing.

Additionally, for adaptive distributed systems, care must
be taken as to where the control of such systems originates.
For mobile systems, for the reason given above for both data
and processing, control must reside with the mobile device
for operation through disconnection:

Principle 2.5 (Control Locality): The mobile de-
vice must be in control of its resource usage and sub-
sequent configuration.

3 Adaptation Models

An adaptation model describes the structure and policies
of an adaptive system. It defines the system level at which
adaptation occurs and also at which level adaptation deci-
sions are made. This section describes three broad divisions
of possible models and argues that only a fully integrated
application aware model can effectively provide adaptation
services to a mobile system.

Transparent adaptation models perform adaptation at op-
erating system or session levels in a manner transparent to,
and concealed from, the applications. Operation of system
services is modified to adapt to resource availability in a
manner that is transparent to applications using that service.

An application-transparent model is beneficial in that ex-
isting applications may be run unmodified and new appli-
cations need not deal with adaptation issues. Central con-
trol of resources and adaptation avoids competition between
applications and aids efficiency in resource use. However,
such an adaptation model must operate without the appli-
cation specific information that can help it make decisions
concerning the best adaptation strategy. Working with un-
known datatypes or the exact requirements of the applica-
tions, the adaptation mechanism must second-guess the na-
ture of the application from its observable characteristics.
This is the fundamental limitation of application-transparent
adaptation: it is unable to efficiently handle situations out-
side its very limited initial remit.

In contrast to the centralised approach of the application-
transparent model, application-specific adaptation places
the task of adaptation solely with the application with no
explicit system support.

While this allows each application to perform adaptation
exactly to suit its needs, there is no cooperation or coordi-
nation between applications. Each application must com-
pete with other applications for resources. In the absence
of a system supporting prioritised resource access, an ap-
plication that adapts, will most likely lose resources to one
which greedily assumes maximum resource availability; ap-
plications that could share common data, do not necessarily
do so. Application-specific adaptation can work well when
only one application is dominating the resources at any one
point in time. This may work well in situations where only

2



vision agents etc..speech

location
transparency

migration
services

naming
services

networking resource monitor clustering

User interface

email web

OS services
System level

Middleware level

Application level

User level

transparent integrated specific

(Odyssey) (Rover)(MAF)

proposed

adaptation

decision

Figure 1. Decision positioning and adaptation areas of Application-Transparent,
Application-Specific and Integrated adaptation models

adaptation trans. spec. integ.

legacy app support � – –
centralised resource � – �

non-competitive � – �

meaningful adaptation – � �

Table 1. Adaptation Models

one application is running at any one time such as we might
expect when using a small PDA or organiser.

The integrated adaptation model provides a composite of
the two above models, combining the system management
of resources with the application specific knowledge of ex-
actly what it requires. This model allows multiple applica-
tions to run concurrently without competing — resources
will be monitored and allocated centrally by the operating
system and adaptation performed by the application, result-
ing in efficient use of resources and meaningful adaptation
for the applications.

Integrated adaptation requires especially tight coopera-
tion between the applications and the operating system. To
achieve this, existing applications must be modified to run
effectively with the system.

Table 1 summarises the pros and cons of the adapta-
tion models described. Figure 1 illustrates the positioning
of these models within the system stack. The transparent
adaptation is epitomised by Hild’s MAF[3] which provides
transparent network monitoring and filesystem caching. As
can be seen, it monitors at the system level and performs
its adaptation decision at the system level. The application
specific adaptation is fully contained in application layer.
Such an application may use other system services (such
as the Rover remote data object caching service or queued
RPC[4]) but the resource monitoring and adaptation does
not influence areas outside of the application proper. An
integrate approach such as that taken by Odyssey[7] uses
system monitoring to instruct application and system adap-
tation. System adaptation follows the transparent approach

for some shared resources such as communications while
Application specific adaptation is performed in by the ap-
plication using hints from the system.

Clearly, for any multi-application mobile system, trans-
parent or integrated adaptation is required. Transparent
adaptation may be considered as a special case of integrated
adaptation in which the application carries none of the adap-
tation burden. A hybrid system could provide integrated
adaptation to suitably constructed applications while resort-
ing to transparent adaptation for legacy applications.

4 DPROJ Framework

The proposed system extends the integrated approach to
develop a monitoring and adaptation structure that spans all
layers. Resource management and costing is centralised to
provide efficient allocation and costing while resource util-
isation is measured at a component level for individual ap-
plications. The adaptation capabilities of the system go fur-
ther than providing hints to applications but provides actual
adaptation services. Its pervasiveness extends to actual ma-
nipulation of application operation to achieve adaptation.

4.1 Aims

The DPROJ framework provides a truly pervasive inte-
grated adaptation mechanism for mobile or distributed ap-
plications. The aim is to be able to simplify the development
of adaptive mobile applications and enhance their function-
ality beyond that available if operation were constrained to
the mobile device alone. The framework facilitates the con-
struction of applications that can harness resources beyond
the mobile device without making assumptions about or be-
ing limited by their varying availability.

By separating the adaptation concerns from the opera-
tional of an application, the developer can be free to con-
centrate on the application’s functionality without having
to enumerate all of the possible resource availability condi-
tions and the configurations required to support them. The

3



application provides the functionality while the DPROJ run-
time provides the adaptation.

The framework is integrated in a system structure that
allows the execution and mutual adaptation of several such
applications concurrently. As such, the framework provides
a means for multi-host, multi-resource, multi-application
synergistic adaptation.

4.2 Metric Unification

An important goal is to abstract over the specifics of any
particular resource or any dimensionality to performance
metrics. To achieve this requires the unification of resource
costs to a single linear currency and the unification of per-
formance measures to a single linear metric.

To achieve this, the framework core implements generic
resource handling to deal with resource collation and de-
mand processing facilitated by a unified resource cost met-
ric. In this scheme, each resource is handled by a resource
specific handler which performs resource monitoring and
conversion of resource cost into a common metric. Fol-
lowing the market model, the chosen unified metric for the
DPROJ framework is that of money. Further, implementing
a real, hard currency, market arbitration for resources will
ensure that resource price inflation will adequately control
resource use. Real penalties ensure that the system will be-
have predictably in a competitive environment.

In this scheme, all resources are reduced to their financial
cost in dollars (actually microdollars). This works well for
communications usage (which especially for wireless ser-
vices is a saleable commodity) and for remote processing
services (which can be charge-per-process style services).

Other resources map less easily onto the currency metric.
Resources such as local CPU time or battery power have a
much more abstract inherent value which becomes much
more dependent on the user. To combat this, user input is
used to value these resources: a simple slider per abstract
resource allows the user to set the relative value of that re-
source. Theoretically, it would be possible for a user agent
to handle these details for the user.

For many applications, performance is a multi-
dimensional quantity and the dimensions involved, or at
least the measured dimensions involved, may not even be
orthogonal. Despite this, any one particular application con-
figuration can represent only one point in that performance
space and the range of configurations available can repre-
sent only a series of points in that space. The Unified Per-
formance Metric can be derived from the multi-dimensional
performance metric using an appropriate transform.

Performance is an abstract quality difficult to grasp even
within the context of a single application or functional ele-
ment. It may be also have different meanings for different
applications and aggregating total application and system

performance becomes a fuzzy area. Reducing performance
measures to a common dimensionless metric and base-
line can simplify the process without overly compromising
the utility of the measure. A streaming video player is a
common and useful example of an application with multi-
dimensional performance: such a player’s performance is
characterised by both the video frame rate and the video
frame size. The overall perceived performance of the player
is a combination of both of these measures: a high frame
rate at a low size is just as poor as a low frame rate at large
size. The unified performance metric would be some com-
bined measure of the two of these reported by the applica-
tion.

Devolution of performance metric unification to the ap-
plication or functional element removes any application
specific notions of performance from the framework. This
simple unified performance metric allows combinatorial op-
erators to determine the overall performance of related func-
tional elements, the overall performance of unrelated appli-
cations executing simultaneously and also the relative per-
formance benefits of alternate functional elements without
needing to discriminate between differing notions of perfor-
mance.

4.3 Design Concept

The framework achieves dynamic adaptation through
two means: control of application fidelity and control of
application locality[2]. This is achieved through the manip-
ulation of the basic blocks of an application.

The basic application building block of the mobile sys-
tem is the functional element. An element represents a
unit of functionality of indeterminate scale and is defined
as being some self contained executable entity of the ap-
plication. Any application can be deconstructed to its ba-
sic elements through dataflow analysis; most applications
are actually built by successive recombination of progres-
sively more complicated elements. For adaptation within
the DPROJ framework, an application is described as a hi-
erarchic collection of functional elements. This hierarchy is
achieved through the instantiation of logical elements which
represent collections of one or more other blocks (either log-
ical elements or functional elements). The three defined el-
ement classes are:

Basic Element — the minimum element of functionality.
Optionally takes some data input, performs some com-
putation and optionally emits some data.

Set Element — logical element containing a set of equiv-
alent alternative elements. These sub-elements each
perform the same function, but may differ in exact im-
plementation, fidelity of implementation or locality of
implementation. Only one sub-element is active at any

4



one time. The sub-elements may be logical or basic
functional elements.

Container Element — logical element containing a col-
lection of sub-elements that work together, composing
the functionality of the container element. The con-
tainer includes wires to connect the dataflow amongst
the sub-elements and also to/from the container’s ex-
ternal interface. All sub-elements are active concur-
rently.

Applications can be built from combinations of these
three element classes. An application itself is just a Con-
tainer with no data imports or exports. The application Con-
tainer contains other elements which may themselves con-
tain other elements and so on. In this manner, an application
is constructed hierarchically from its functional elements.

The adaptation mechanism works through manipulation
of the Set elements, dynamically selecting and activating the
best sub-element for the given conditions.

4.3.1 CORBA Foundations

DPROJ focuses on providing a decision support for appli-
cation adaptation, and hence uses existing software services
to perform its object migration and relocation.

DPROJ’s distribution system and relocation mechanism
is built around a CORBA software-bus structure where each
functional element is encapsulated in a CORBA object.
Each element hence exposes at least three interfaces:

1. CORBA Object — provides standard CORBA func-
tionality for object initialisation, destruction, remote
access etc. If the CORBA ORB supports LifeCycle op-
erations, object migration and state management meth-
ods may also be available.

2. Element Manager — provides element manipulation
and monitoring methods including application struc-
ture analysis and resource usage monitoring.

3. Element Specific — provides import/export methods
specific to each element type. These methods represent
operation of the application proper while the above in-
terfaces allow application control and adaptation.

Superficially, applications operating within the DPROJ

framework appear as a number of processes executing on
several hosts (Figure 2). The framework establishes on each
host basic runtime support including resource monitors and
application invocation primitives. Each application is then
represented on each chosen host as a code pool, a collec-
tion of application functional elements. Application Prox-
ies running on the mobile host perform the adaptation duties
for the applications proper.

Code Pool

resource
monitor

Code Pool

resource
monitor

Code Pool

Code Pool

resource
monitor

mobile device

fixed servers

resource
monitor

Application
Monitor

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2. Framework component processes in
the system.

4.4 Application Proxy

The Application Proxy performs the performance report-
ing, adaptation decision and reconfiguration for any logi-
cal element. Typically, one application proxy is instanti-
ated to represent one top-level Container Element (an appli-
cation) which then spawns further proxies to manage each
sub-element, gradually building a proxy hierarchy parallel
to that of the application. Application proxies representing
application elements on different hosts may be merged to-
gether to form a single control hierarchy for a distributed ap-
plication. A further Super Proxy may represent the system
container and manage each of the Application Monitors as
sub-elements, making the top-level configuration decisions.

Each proxy supports monitoring and reconfiguration for
the element it represents. For monitoring, the proxy can
produce a piecewise linear function of the cost-benefit curve
of an element. This curve gives the expected cost of oper-
ation of the element for operation at a given performance
point. A proxy representing a Basic functional element
builds this curve from its monitoring of that elements re-
source consumption and claimed performance characteris-
tics. A proxy representing a Set or Container Element forms
its cost-benefit curve by combination of the curves of the
sub-elements contained within it. In the case of Set Ele-
ments, the resulting curve is the minimum set of the con-
tained curves while for a Container Element, the resulting
curve is the sum of the curves contained.

With the single parameter cost-benefit curve, adaptation
decisions reduce to selecting a single point on that curve and
then propagating that decision to any sub-proxies. Deciding
on the point can be based on a simple strategy such as ‘se-
lect the highest performance that remains under this cost’ or
‘select the highest performance to cost ratio’ or ‘keep total
costs for today under this amount.’ This decision will re-

5



sult in a call to the top level proxy to operate at the decided
performance point. As each sub-proxy receives this call, it
decides how to act. A Set Element Proxy uses this to se-
lect which of its sub-elements offers the least cost for this
performance point and activates it, deactivating any other
sub-elements, and forwards the decision point to the active
sub-element. A Container Element Proxy forwards this on
to all sub-elements. A Basic Element Proxy forwards the
set point directly to the Basic Element. This activation and
deactivation of elements provides the core adaptation mech-
anism of the framework and occurs in a manner transparent
to the application’s operation.

Periodic invocation of the resource monitoring and re-
configuration process enables the application to dynami-
cally track resource variations. Reducing the dimensions
of the decision space through metric unification simplifies
this reconfiguration process without sacrificing application
notions of performance.

4.5 Applications

The following sections describe the implementation of
some simple applications within the DPROJ framework
and their operation in a controlled simulation environment.
This environment uses trace modulation of communications
resources[7] to produce a communications availability over
time profile in a reproducible manner.

4.5.1 Media Streaming

Media streaming is a common test case for adaptive mo-
bile systems. The aim here is to simulate an application
that streams video or audio data from a remote host to be
presented on the mobile device. Media streaming is a good
test case especially for Quality of Service demonstrations
where the quality or fidelity of a media stream can be var-
ied to best fit conditions. In this example, we demonstrate
how the locality of processing for media stream decoding
can be varied to control resource usage. We follow this with
a short discussion of how multi-fidelity operation might be
included.

The Serial Test application is a chain of dummy data pro-
cessing elements, each of which increases the magnitude of
the dataflow along the chain. The two ends of the chain are
anchored to the server and the client to enforce a split across
two hosts. The Serial Test application can be thought of as
a basic model of any media streaming type application; the
data originates in compressed format and is decompressed
through various stages resulting in increasing dataflow traf-
fic before final presentation at the user’s mobile terminal.
The exact location of the decompression is unimportant but
the origin of the data and the final presentation point of the
data are.

Aim To check adaptation characteristics versus variations
in resource cost (availability). ie: the ratio between server
CPU cost (��), client CPU cost (��) and network cost (��).
Initially, �� � ��, �� � ��� and � �� �� �� ��� is the
independent variable.

Description The � -Block SerialTest application com-
prises a TestSrc data source and a TestSink data sink linked
via � TestBlock data processing elements. The table below
shows the basic characteristics of each element type. The
TestSrc element generates ��-byte data frames at 5 frames
per second. Each TestBlock element exports a data frame
twice the size of the one it imports. The TestSink element
received the final frame and discards it. The TestSrc is con-
strained to operate solely on the server while the TestSink is
constrained to the client. Each TestBlock may operate on ei-
ther the server or the client. The location of each TestBlock
is unconstrained by the location of any other. The CPU re-
quirements of each element type is the same at 100TIPS.

traffic locality
type CPU in out client server

Source 100 0 �� � ���B – �

Block� 100 �� ���� � ���� � �

Sink 100 �� 0 � –

For the purposes of these tests, a 10-Block SerialTest
application was used with �� � ���bytes at �� up to
�� � ���kB at breakpoint ���. Operation of the appli-
cation is enforced across two hosts; ideally, the application
will only be partitioned at one point. The application may be
partitioned at any of the breakpoints �� to ���. Hence, the
total cost function���� for operation of the application may
be devised in terms of the breakpoint�� for � �� � �� ��,
CPU requirements per element � � �� and the cost param-
eters ��, �� given previously:

�	
� � server CPU � client CPU � network traffic (1)

���� � ��� ��� �� � ��� ���� �� � ��
��

���	
���

�(2)

� ������ 
���� �������
� (3)

Figure 3 shows total cost versus breakpoint over a range
of communications costs. The framework will partition the
application to minimise the cost, hence when:

�����

��
� �
��� �������

� � � (4)

Observations Figure 4 shows the results of operation
with �� � ��. Equation 4 for �� � �� predicts a break at

6



1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7
x 10

4

break point

co
st

 µ
$
/s

0

10

20

30

40

50minimum cost pt

Figure 3. Serial Test cost versus breakpoint
for different communications costs.

1150

1050

950

850

750

650

550

450

350

250

150

50

time (seconds)

el
em

en
t

client side

server side

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

sink    

block9  

block8  

block7  

block6  

block5  

block4  

block3  

block2  

block1  

block0  

src     

performance set point                
predicted cost ($/3sec ×10−5)
actual cost ($/3sec ×10−5)   

Figure 4. Serial Test locality pattern.

point � � �. In this case, the application begins partitioned
between client and server with all blocks executing on the
server except for the sink. This is a very high bandwidth
configuration as the network traversal occurs after block9
with the 256kB frames. During execution, the application
monitor calculates the application cost-benefit curve every
second and performs any required reconfigurations. In this
way, the application will gradually approach its steady min-
imum cost state. In this case, this takes approximately seven
iterations. Some fluctuations occur due to variations in the
measured communications use. The approach to the steady
state is gradual as the framework is unable to estimate the
possible cost-benefit curves of far removed configurations.
This is due to the manner in which the application appor-
tions cost of execution of a particular configuration; CPU
and power costs are directly attributable to the element un-
der execution, while communications costs are attributed
equally to both the receiver and the sender. Hence, only
an element that is directly communicating via the network
incurs the communications costs which penalise it in the re-

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526

Asink

Ablock5

Asrc

Bblock3

Bblock8

Bsrc

0

1000

2000

3000

4000

5000

time

element cost over time

Figure 5. Parallel Test individual elemental
costs.

1150

1050

950

850

750

650

550

450

350

250

150

50

time (seconds)

el
em

en
t

client side

server side

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Asink  

Ablock9

Ablock8

Ablock7

Ablock6

Ablock5

Ablock4

Ablock3

Ablock2

Ablock1

Ablock0

Asrc   

Bsink  

Bblock9

Bblock8

Bblock7

Bblock6

Bblock5

Bblock4

Bblock3

Bblock2

Bblock1

Bblock0

Bsrc   

performance set point                
predicted cost ($/2sec ×10−5)
actual cost ($/2sec ×10−5)   

Figure 6. Parallel Test locality pattern.

configuration process.

4.5.2 Parallel Applications

The DPROJ framework performs adaptation across multiple
applications, aiming to minimise the total cost of the system
while maximising total performance. In this test, two iden-
tical instances of the above media streaming test were run in
parallel. Figure 5 shows the individual element costs over
time which clearly shows that the majority of the applica-
tion execution cost derives from communications cost. The
difference in processing cost is evident in the step between
elements executing on the client and those on the server.
Figure 6 shows the locality summary of the application el-
ements. As expected, the framework has divided both ap-
plication instances in the same manner, to minimise overall
costs.

7



bullseyes
candidate

Edge
Fitting

5 Concentric
Test

6

Recognition
Code7

Edge
Thinning

3Edge
Detection

2Adaptive
Thresholding
1

0
Frame
Grab

contrast enhanced
binary frame

Edge
Following

4 ellipse candidate
edgels

camera
input

edgel set

ellipses

greyscale frame

reduced edgel set

target candidate

target code, coordinates and
outer ellipse parameters

Figure 7. The TRIP target recognition
pipeline.

4.5.3 MobileTRIP

The MobileTRIP application currently under development
employs the DPROJ framework to construct and run a real
time vision processing application[1] for a mobile user.
MobileTRIP extracts the circular TRIP tags from a video
stream, using the tag values to associate values with items
within the view. MobileTRIP is aimed towards providing
a low cost tagged approach to sentient computing. The
application is designed to run on a small handheld com-
puter which offloads much of the processing work onto re-
mote servers. This application has both high processing and
high bandwidth requirements and so is well suited for de-
ployment using this framework. Figure 7 shows the initial
decomposition of the application into functional elements.
Each of these processing elements may be located either
on the mobile device (client) or any one of several remote
servers. There may exist more than one implementation of
each block, providing the option to switch between high
quality but expensive image processing and low quality but
cheap processing.

5 Conclusion

This paper has presented the DPROJ framework which
lays the groundwork for the development of adaptive mobile
or distributed applications. The framework greatly simpli-
fies the onus on the application author in developing appli-
cations that support integrated-adaptation at the cost of de-
veloping within a rigid structure. The framework is shown
to successfully support multi-application synergistic adap-
tation even as a work under progress.

Further work on the framework includes further applica-
tion development and more intensive testing and verification
of the adaptation characteristics of the framework. Particu-
larly, extension of the framework to accommodate integra-
tion with pay-per-use third party services as alternate func-
tional elements. This would enable such services as speech

recognition performed remotely by service providers to be
used seamlessly depending on current budgets and connec-
tivity.

Acknowledgements

The authors would like to thank AT&T Laboratories
Cambridge for their support of this work and Diego Lopez
de Ipina for his cooperation with the development of the
MobileTRIP application.

References

[1] D. Lopez de Ipina. Trip for sentient computing. Tech-
nical report, Laboratory for Communications Engineer-
ing, Engineering Department, University of Cambridge,
1999.

[2] T.M. Edmonds, S.E. Hodges, and A. Hopper. An adap-
tive thin-client robot control architecture. In Proceed-
ings Real-Time Computing Systems and Applications,
Hong Kong, December 1999. IEEE.

[3] S. G. Hild. Managing Mobile Connections. PhD thesis,
University of Cambridge, Sept 1997.

[4] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A toolkit for mo-
bile information access. In Proceedings, Fifteenth Sym-
posium on Operating System Principles, Cambridge
MA 02139 USA, December 1995. MIT Laboratory for
Computer Science.

[5] R.H. Katz. Adaptation and mobility in wireless in-
formation systems. IEEE Personal Communications,
1(1):6–17, 1994.

[6] B. Noble, M. Satyanarayanan, D. Narayanan, J.E.
Tilton, J. Flinn, and K.R. Walker. Agile application-
aware adaptation for mobility. In Proceedings of the
16th ACM Symposium on Operating Systems Princi-
ples. ACM, Oct 1997.

[7] B. D. Noble. Mobile Data Access. PhD thesis, School
of Computer Science, Carnegie Mellon University, May
1998.

[8] M. Satyanarayanan. Mobile information access. IEEE
Personal Communications, pages 26–33, Feb 1996.

[9] J. Waldo, G Wyant, A Wollrath, and S Kendall. A note
on distributed computing. Technical report, Sun Mi-
crosystems, 255 Garcia Avenue, Mountain View, CA
94043, USA, November 1994.

8


