Automotive Australia 2020 VISION

The Automotive Australia 2020 project would like to thank the following workshop participants. Their knowledge and insight has shaped this vision of the automotive industry.

Mr Zoran Angelkovski	Mr Peter Keley						
President and Chief Executive Officer	Executive Director, Planning						
Continental Pty Ltd	GM Holden						
Mr Stan Anson Senior Adviser Office of Senator the Hon Kim Carr, Minister for Innovation, Industry, Science and Research	Mr Steve Payne Head, Manufacturing Division Department of Innovation, Industry, Science and Research						
Mr Nixon Apple	Mr Russell Pettis						
National Economics and Industry Advisor	Managing Director						
Australian Manufacturing Workers Union	Australian Automotive Air Pty Ltd						
Mr Juergen Bracht Managing Director ZF Lemforder Australia	Mr Len Piro Executive Director, Manufacturing and Business Services Department of Trade and Economic Development, South Australia Government						
Hon Stephen Bracks	Mr Mike Rausa						
Australia Automotive Ambassador	Senior Divisional Manager, Manufacturing Support						
Australian Government	Toyota Motor Corporation Australia						
Mr Sam Casabene	Mr Mike Shnier						
Vice President , Purchasing	Managing Director						
Ford Motor Company of Australia Limited	Tenneco Australia and New Zealand						
Dr David Charles	Mr Gavin Smith						
AllC Chairman	Regional President, Powertrain & Chassis Systems Control						
Deloitte Touche Tohmatsu	Robert Bosch (Australia) Pty Ltd						
Mr Barry Comben Independent Chairman Cooperative Research Centre for Advanced Automotive Technology	Mr Terry Stinson Chief Executive Officer and Managing Director Orbital Corporation Limited						
Mr Tony Ellul	Mr Geoff Susans						
Business Development Manager	Manager, Advanced Manufacturing Industry and Trade Division						
Marand Precision Engineering Pty Ltd	Department of Innovation, Industry and Regional Development						
Prof. Rob Evans Director NICTA Victoria Research Laboratory and Professor of Electrical Engineering NICTA and University of Melbourne	Mr Evan Thornley Chief Executive Officer Better Place						
Dr Barrie Finnin General Manager, Advanced Engineering Components Commonwealth Scientific and Industrial Research Organisation	Dr Gary White Research Manager Cooperative Research Centre for Advanced Automotive Technology						
Mr Bruce Grey	Mr Hayden Williams						
Managing Director	National Manager, Automotive and Advanced Manufacturing						
Bishop Technologies	Austrade						
Mr Bruce Griffiths Executive Chairman Futuris Automotive Group Ltd.	Mr Chris Wong Program Manager, Automotive Industry and Trade Division Department of Innovation, Industry and Regional Development						

Foreword

The Automotive Industry Innovation Council (AIIC) was formed in late 2008 with an objective that includes building innovation capacity through the nurturing and development of new and existing capability. The achievement of this goal requires the development of a strategic vision and an associated long term plan. The Australian automotive industry cannot be internationally competitive on all fronts. There are however, distinctive opportunities where Australia can be competitive in the short, medium and long term.

The Rudd Government's New Car Plan for a Greener Future encompasses a \$6.2 billion investment which is designed to reshape Australia's automotive industry and improve its competitiveness. This funding must be invested strategically to develop the capabilities that underpin these distinctive opportunities. To clearly identify both these opportunities and the underlying capabilities, the AIIC has endorsed the development of an industry roadmap.

In July 2009, AutoCRC, in partnership with the Australian National University (ANU) and Australian Commonwealth Scientific Industrial and Research Organisation (CSIRO), in collaboration with the University of Cambridge, and supported by the Australian and Victorian Governments, began working with the Australian automotive industry to develop a roadmap to 2020 and beyond – the Automotive Australia 2020 Project.

The development of an Australian automotive industry roadmap has been designed as a six phase programme with each phase serving to populate a corresponding section of the roadmap. The six phases include:

- Phase 1 Establishing a vision
- Phase 2 Defining immediate domestic and long-term future global market need
- Phase 3 Understanding national capability
- Phase 4 Identifying key tactical & strategic opportunities
- Phase 5 Strategic opportunity roadmap development
- Phase 6 Prioritisation

Phase 1, establishing a vision, identifies a strategic vision for the industry, which is the primary driver for the roadmapping process. This has been achieved through extensive research, interaction with industry (through interviews and surveys), and culminated in a one day Vision Workshop. During this workshop a strategic vision for the industry was defined through the identification of trends and drivers, resulting technology needs and required capabilities. Another key outcome of this workshop was the definition of broad evaluation criteria which will be used to prioritise both shorter and longer term strategic opportunities in Phase 4 of the programme.

The Vision workshop was held on the 4th of September 2009, and was hosted by the Victorian Department of Innovation, Industry and Regional Development. The workshop drew together 26 participants representing significant stakeholders within the automotive sector and related industries. The active involvement of all participants ensured a successful workshop process, resulting in significant outcomes. This report summarises these outcomes, which form the focus for the subsequent phases of the roadmap – Automotive Australia 2020.

Dr Matthew Doolan Project Manager Automotive Australia 2020

Automotive Australia 2020

Table of Contents

Introduction	5
The Australian Automotive Industry	5
A Vision for the Automotive Industry	7
A Roadmap to the Future	8
Evaluation Criteria	
Trends and Drivers	11
Technology Needs	
Capabilities	
Next Steps	
Acknowledgements	15

Introduction

This report presents the vision developed in the first phase of the Automotive Australia 2020 Project. Building on extensive research and industry consultation, this phase culminated in a Vision Workshop on September 4th, 2009.

The context for the project is outlined in the section below. A vision for the future of the Australian automotive industry is presented in "A Vision for the Automotive Industry" which includes a graphical overview of identified trends and drivers, technology needs, and capabilities. This is followed by the evaluation criteria that will be used to assess the opportunities identified in future phases of the roadmapping programme.

Trends and drivers across short, medium and long time horizons have been categorised and are presented in "Trends and Drivers". Customer requirements then lead to the technologies identified in "Technology Needs". Technology needs have been categorised and prioritised. These technologies are underpinned by industry capabilities that are identified in "Capabilities".

The outcomes of this first phase form the basis for the remaining five phases, which are outlined in "Next Steps".

The Australian Automotive Industry

Australia's automotive industry includes three Motor Vehicle Producers (MVPs) and more than two hundred specialist component suppliers. The industry's main activities include production of vehicles, components, engineering, tooling and design. There is also a vibrant specialised tooling and services industry that comprises in excess of 500 firms that support large vehicle production in Australia for domestic and export markets.

While the vehicle manufacturing industry in Australia dates back to the late 1890s, it was not until the end of World War II that serious industrialisation and local manufacturing commenced. At this time local production, which was supported by subsidies, tariffs and quota systems, climbed to an historical peak of 2 percent of worldwide production. In the 1960's increasing national wealth saw major investment and growth in the Australian market. International investment created a local automotive market that had a variety of brands and products, including multiple manufacturers and assemblers.

As production reached a plateau in the 1980's, the Australian government initiated a major strategic realignment of the industry through the Button Plan. This saw a reduction in the number of models produced from 13 to 4 and the gradual reduction of import tariffs and other industry protection systems. Continuing government support was put in place through the creation of the Automotive Competitiveness and Investment Scheme (ACIS) replacing the export facilitation and duty compensation schemes. This approach worked well serving to increase exports of vehicles and components. In addition, the gradual reduction of tariffs and the strengthening of the Australian dollar against the American dollar have increased the affordability of imported vehicles across all segments.

Automotive Australia 2020

In 2002, a Productivity Commission review of the industry concluded that "in recent years, the automotive industry has transformed itself to become a major exporter and innovator". The Australian vehicle market is one of the most open and competitive in the world. The industry employs over 46,000 people (source: ABS) and in 2008 local production volumes reached approximately 325,000 vehicles (source: DIISR 2008 Key Automotive Statistics). The Australian automotive industry accounts for approximately 0.6 percent of Gross Domestic Product. In 2006, local component producers supplied Australian MVPs with 75% of their components (worth \$4.6 billion).

Source: DIISR 2008 Key Automotive Statistics

The global economic crisis has severely impacted the global automotive industry resulting in dramatic decreases in sales. Global climate change is becoming a key issue with growing pressure to reduce emissions worldwide. Coupled with increasing fuel prices, a resultant shift in consumer preferences towards 'greener' products is placing pressure on the global automotive industry to meet rising expectations. Intense competition from emerging automotive players in Asia – the emerging centre of mass of the global light vehicle market, makes conditions for the Australian automotive industry particularly challenging.

These pressures open up many opportunities, several of which require significant and sustained innovation and investment. The Australian Government's New Car Plan for a Greener Future provides \$6.2 billion of investment to reshape the Australian automotive industry. Such investment needs to be targeted carefully based on an understanding of the opportunities that will reap real reward for the industry, ensuring its continued development and growth.

A Vision for the Automotive Industry

Australia's automotive industry must achieve recognition as a strategic element of the global automotive industry to be attractive to global companies and their investors. Australia must have a sustainable, profitable vehicle manufacturing industry with global reach that maximises opportunities in local and international markets. The industry must be bigger, more productive, and provide more jobs in the manufacturing and supply sectors. This can be achieved through leveraging existing strengths and building new capabilities.

Australia has a globally integrated industry including three vehicle manufacturers and more than 200 specialist suppliers with the capacity to develop a vehicle from concept to release. The industry is capable of producing cars that excite consumers in local and overseas markets through environmental compliance, safety excellence and value for money. By aligning development with leading technologies, Australian suppliers can develop and expand distinctive global leadership positions in key systems and components, assuring the long term survival of the industry. Excellence in design, development and implementation of new technologies, combined with an increasingly flexible labour force, will result in developing and expanding export markets for Australian products and expertise.

Through advanced green car initiatives with global export potential, Australia can become one of the world's leading designers and producers of competitive, large, powerful, zero emission passenger vehicles. This game changing initiative will use Australia's strategic strengths and capabilities, supported by investment attraction and focused government support, and will meet the identified and emerging needs of the global automotive market. By leading development in this segment, Australia will own a greater portfolio of IP and become the industry of choice for design, engineering and testing of globally desirable fuel efficient and environmentally responsible products.

As concerns over environmental challenges and energy security drive increased public awareness of emissions and efficiency, a paradigm shift is looming in the automotive market. A radical shift presents opportunity to benefit from a fundamental change in strategy and vision, but emerging economies with large automotive sectors are becoming increasingly competitive for investment dollars in the global industry. These are significant challenges for the Australian industry, but a commitment to long term development targeting vital gaps in technology and capability will lead to a sustainable, innovative growth industry. This revitalised automotive industry will create more wealth and more skilled, well paid jobs for Australians.

A Roadmap to the Future

The realisation of the vision for the automotive industry is represented in the roadmap below.

vers				E	missio Efficier	ns & 1cy		Energ	y Scar Securit	city & y	C	Industr Capabili	y ty	Overso Co	eas Ma ompetit	rkets & ion			Adva in Tech	inces inology			Inf & (rastruc Governn Suppor	ture nent 't		(C Custom	ustome ers den
Trends & Dri			Improved vehicle efficiency	Social pressure on environmental issues	Increased environmental awareness	80% reduction in CO2 production (2050)	Strict emissions regulations	Increasing price of oil (>\$140/barrel)	Transition to an energy driven market	Energy and carbon issues driving policy	R&D driving rapid change	Continued under- utilisation of capacity	Restructuring and consolidation	R&D expenditure above OECD average	Growing markets in BRIC economies	Competition from: CN, IN, TH, MX, SK, BR, RU	Manufacturing shift away from China	Development of new materials	Advances in wireless technology, ICT	Gaseous fuel storage technology	Development of alternative fuels	Advances in energy storage technology	Automotive industry support schemes	Transformation of electricity grid management	Fuelling infrastructure for alternative fuels	Greener	Safer	More Flexible	More Integrated
	Body & Chassis	1 2 3 4 5 6 7	Reduced Reduced Common Flexible Smart re Globally New des	d weight of d aerodynau n systems a and reconf egenerative competitiv sign concep	body & chas mic drag thr and modules igurable veh braking for e niche platt	ssis structure ough body & s across bran licle concepts safety form antage of cor	e & compone running gea ids (Invisible s	nts; Advanced design to customers Iternative fue	d lightweigh ;) el vehicles	it materials;	Increased u	ise of structu	iral compos	ites															
logy Needs	Driveline (Internal Combustion)	8 9 10 11 12 13	Comfort Develop Reduced Engine d Petrol di Flexible,	able vehicle ment of alte d weight of downsizing irect injection reconfigur	es featuring ernative fuel driveline con and boostin on; LPG, CN able vehicle	technologies s, gaseous fi mponents & s g G Direct injec concepts	including: h uels (includin systems; Adv ction	ghly damped g CNG, LPG, anced lightw	I materials, r LNG, H2) an reight materi	noise insulat nd systems fi ials	tion, enhanc for onboard s	ed HMI desig storage and	gn distribution																
d Technol	Driveline (Non Internal Combustion)	14 15 16 17 18	Lithium, Electric Onboarc Flexible	d weight dri Lithium-Po vehicle driv d energy ge , reconfigu	veline comp olymer, Lithi reline and dr neration for rable vehicle	onents & sys um Iron Phos ive systems; range extens concepts	stems; Advar sphate batter High efficier sion	iced lightweig ies; Advance cy, high pow	ght materials d battery ch er, low cost	s emistry and electric mot	l design tors																		
Identifie	Electrical & Control Systems	19 Standard interfaces (USB, A2DP, HDMI, etc.) 20 Integrated intelligent transport systems (Traffic & safety management, reduced fuel consumption); Vehicle-vehicle, vehicle-infrastructure protocols and systems 21 Convenient, easy recharging systems 22 Integrated control, information and safety systems (Autonomous); Driver health & alertness monitoring; Seeing car integrating IR, Ultrasound, radar, augmented reality																											
	Manufacturing, Engineering Services & Materials	24 25 26 27 28 29 20	Design f Vehicle s Improve Reduced Artificial Focus in	for weight n safety stand d simulatio d drag coef l intelligenc westment c	eduction; In dards and te n to reduce ficient desig e process co on core engin	creasing use esting prototyping n ontrol & mon neering and (of common situation of com	systems; High e investments	h strength al	luminium all	loy processe	es for large c	ars; High sti	rength alumii	nium alloys;	Advanced lig	htweight m	aterials											
		30	Flexible 1	and recont	igurable ven	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25 2	26 2	7 2
	Body & Chassis		Lightwe Aluminiu Corner r Seating	ight materia um/Magnes nodule, spr systems ar	als sium casting ing, damper nd interior de	g & forming; l - design, de esign for light	High pressure evelopment a tweighting; Ir	e magnesium nd manufactu istrument pai	casting uring; Integr nel design	rated friction	a & electric b	oraking; Brak	king system:	s including A	BS/ESC														
bilities	Driveline (Internal Combustion)		Gaseous Combus Electric- Lightwe	s fuels and ition engine integrated ight materi	drivetrain – boost and e drivetrain (r als; Alumini	design, deve efficiency; Di nedium to lar um, magnesi	lopment and rect injection ge) um casting 8	manufacturir diesel techno forming	ng; Gaseous ology; Exhai	s fuel storage ust systems	e <mark>technology</mark> – design, de	y evelopment a	and manufa	cturing															
ian Capa	Driveline (Non Internal Combustion)		Batteries Integrate Gas stor Lightwe	s and powe ed electric age techno ight materia	er systems d drivetrain (n ology als	evelopment; nedium to lar	Lightweight ge)	batteries																					
d Australi	Electrical & Control Systems Manufacturing, Engineering Services & Materials		Instrume Driver co HVAC sy Battery	entation an ondition an ostems and power	d driver HMI d state mon systems	l design and i itoring	integration; li	nternal data a	and commur	nication syste	tems																		
Identified			Advance Material Establish Innovativ Bapid te	ed tooling c is developm hed, flexible ve & efficie chnology d	apability; Ra nent; Experin e engineerin nt robotics a eployment	npid tool deve mental found g sector; Ma and automati speed to may	lopment ry for lightwe nufacturing f on; Software rket; Dioital r	ight, low cos lexibility. Low developmen nockup and c	t materials; v volume,; E t; Traffic & a computer aid	Environmen ducation sys accident scel	ntal sustaina stem & R&D mario model	b <mark>ility in desi</mark> ; Strategic p ling	gn & manufi lanning & vi	acturing isioning;															
	Other Australian Resources		Small po Linkage Natural Battery	ppulation, s s in global i resource er charging in	killed adapta ndustry; 'Sr ndowment; I frastructure	able, enginee nart' reputat Per capita GE ; Hydrogen li	ering capabili ion in econor DP on par wit quid & gas m	ty; Sc&T repr nic managem h 4 dominant anufacture	esent ~38% ient & funda West Europ	6 of labour re mentals ean econom	esources; W nies	Vorkforce bed	coming mor	re flexible; St	rong educat	ion system, a	and research	n and develo	opment infras	tructure									

Automotive Australia 2020

er Requi nand ve	rement hicles t	ts that are	:	
More Convenient	More Comfortable	More affordable to buy and run	More individual niche and exciting	More Globally Appealing

The table at left presents the linkages between identified trends and drivers and technology needs.

Key: Drive	er – Technology Relationship
	Strong
	Medium
	Minimal

Capabilities have also been linked to market needs and these linkages have been presented at left. The needs have been numbered according to their position in the previous figure.

Page 9

Evaluation Criteria

Beyond setting a vision, the workshop participants developed evaluation criteria. Focusing on aspects of the attractiveness of opportunities and their fit with Australian capability, the following criteria have been identified as they apply to two time horizons: the short-term (next vehicle model) and longer-term (new car plan and beyond). Opportunities identified in the following phases of the programme will be prioritised against these criteria.

Figure 3– Short-term opportunity evaluation criteria

Long-term Opportunities

Opportunity Attractiveness New car plan and beyond Meets needs of next model year vehicles - Global accessible market size Key: Australian accessible market size Opportunity to establish and protect leadership position Opportunity Likelihood of technical feasibility Potential to sustainably deliver industry triple bottom line: Significant market & strong capability Economic, Social & Environmental Performance (Profit, People and Planet) **Global Technology Need and Attractiveness** Low High Fit with Australian capabilities: **Current Automotive Capabilities** Global accessible market size Fit with Australian Capability Alignment with future Automotive Good supply base consolidation Non-Automotive supply chain - Science Base - Human and Natural Resources Global alliances and alignment with international standards Poor

Figure 4– Long-term opportunity evaluation criteria

Trends and Drivers

The Australian automotive industry is influenced by internal and external forces. These external forces, realised as trends, will determine the technology required in the automotive industry to 2020 and beyond. The trends and drivers, as deemed most relevant by the participants, can be categorised into six key focus areas: Emissions & Efficiency; Energy Scarcity & Security; Industry Capability; Overseas Markets & Competition; Advances in Technology; and Infrastructure & Government Support. Within these categories, the workshop participants identified the most relevant trends and drivers and their relative importance as presented in Figure 5.

Figure 5 – Prioritised Trends and Drivers.

Trends and drivers are linked to technologies by customer demands. Though this link can be made implicitly, the workshop participants identified nine key areas of customer requirement. Identified customer requirement areas are presented in Figure 6.

Figure 6 – Customer Requirements.

Technology Needs

Technologies will be applied or developed to respond to trends and drivers. The workshop participants identified a wide range of technologies which have been categorised according to the automotive systems or manufacturing processes where they will be applied. These systems include: Body & Chassis; Driveline (Internal Combustion); Driveline (Non-IC); Electrical & Control Systems; and Manufacturing, Engineering Services & Materials. In the same way as the trends and drivers, the technology needs identified by the participants have been distributed across four time horizons and have been prioritised as shown in Figure 7.

Driven by trends and drivers, these technology needs will help in achieving Australia's strategic vision. To realise these technologies, the enabling capabilities must exist. Current capabilities need to be identified along with critical gaps relating to future strategic opportunities.

Capabilities

The Australian industry provides capabilities to realise identified technology needs. In the short term, technologies can only build on existing capabilities. As timelines stretch into the future, research capabilities can develop into production capacity.

The workshop participants identified a subset of important capabilities existing in the Australian industry as well as a number of emerging capabilities. These have been categorised, according to relevant automotive systems, in the same manner as technology needs. The participants then identified priority areas as presented in Figure 8.

Figure 8 – Prioritised Australian Capability.

Capabilities and Technology Needs that have been identified in the workshop will provide baseline data in the following phases of the Automotive Australia 2020 project. The remaining phases of the programme are outlined in the following section – Next Steps.

Next Steps

Phases 2 & 3: Understanding Global Technology Needs and Australian Capabilities

An important output from the Vision Workshop has been to establish the most promising technology opportunity areas and strongest capabilities for the Australian Automotive Industry, identified in sections 4 and 5. These will be refined through further detailed discussions with the MVPs, suppliers and other stakeholders and used to focus the data gathering during phases 2 – *Understanding Technology Needs* and 3 – *Understanding National Capability*. These will involve over 200 surveys and interviews across the industry, science and technology base. Key areas for investigation will be quantifying these opportunities and understanding the factors that will be critical for success, and researching relevant capabilities and assessing their strengths and competitive position.

Phase 4: Matching Needs and Capabilities

The objective for the Automotive Australia 2020 Roadmap is to identify opportunities where Australia can be competitive in the short-term and longer-term (2020 and beyond) horizons. In both timescales it will be important that attractive opportunities are supported by matched Australian capabilities and resources, whether these are currently deployed in the automotive sector or elsewhere. Only by building on the foundations of these distinctive capabilities will a sustainable and differentiated competitive position be established. Phase 4 of the programme will establish these "matching points" in workshops covering each of the time horizons; with the outputs reviewed by the AlIC in a final workshop to maximise the linkages between short and long term opportunities. The prioritisation will be achieved using a portfolio approach embracing the evaluation criteria developed in the Vision Workshop (see page 10)

Phases 5 & 6: Roadmapping Opportunities to Action

Phase 5 of Automotive Australia 2020 programme will develop detailed roadmaps towards the implementation of the prioritised strategic opportunities; identifying necessary enablers such as skills, funding, policy and technology development. These will then be reviewed by the AIIC in phase 6 to prioritise investment decisions.

Figure 9 — Automotive Australia 2020 Program Phases

Acknowledgements

Automotive Australia 2020 would like to acknowledge the contributions of the following partner organisations:

Further Information

An appendix containing supplementary information will be available, on request, through the Automotive Australia 2020 website. For further information, please visit www.autocrc.com/2020.htm or contact the Automotive Australia 2020 Project Office at:

AutoCRC Suite 1/3 Westside Avenue Port Melbourne VIC 3207

Tel: +61 3 9681 8626 Fax: +61 3 9673 5999 Email: automotiveaustralia2020@autocrc.com

