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ABSTRACT  

  
 

We investigate the effect of intangible capital and robot adoption on labor productivity in 18 

European Union countries between 1995 and 2015. Previous studies show that both robot adoption 

and intangible capital enhance productivity. However, little is known about how intangible capital 

may influence the impact of robot adoption on productivity. We find that intangible capital, notably 

human and organizational capital, displays complementarity with robots and hence moderates the 

effect on productivity. Human capital investment reduces the effect of robots on productivity in the 

short term but enhances it in the long term. By contrast, investments in organizational capital 

increase the effect of robots on productivity in the short term but reduce it in the long term. The 

contrasting dynamics are based on whether the complementarity with robots is direct, as in human 

capital, or indirect and systems-based, as in organizational capital. Pickering’s Mangle of Practice 

provides a conceptual framework to understand the formation of complementarity over time. Our 

findings point to the importance of to considering the development of new organizational structures 

and business models following the adoption of robots in order to obtain the benefits of productivity 

growth. 

Keywords: Robots; Intangible Capital; Human Capital; Organizational Capital; Tuning; Business 

Models 
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INTRODUCTION 

The increasing use of industrial robots in the economy has been shown to substantially raise 

productivity (Graetz and Michael 2018). However, despite the widespread use of robots, 

productivity growth in many advanced economies continues to lag (Crafts 2018). One possible 

explanation is the growth of intangible capital at the expense of tangible assets, which have hitherto 

been de-emphasized in conventional accounting methods (Brynjolfsson et al. 2018). Like robot 

usage, intangible capital greatly enhances productivity (Marrocu et al. 2011, Corrado et al. 2012,). 

Current studies have begun to explore productivity gains from the complementarity between 

technological and intangible capital, predominantly in the context of information and 

communications technology (ICT) but the dynamics of how this relationship unfolds over time 

have not been explicated (Bresnahan et al. 2002). In particular, little is known about how intangible 

capital influences the impact of robot adoption on productivity. Our study contributes to a deeper 

understanding of such a relationship by examining the complementarity of robots and intangible 

capital.  

In this article, we factor in the moderating effects of intangible capital on robots as they pertain to 

labor productivity. 1  In order to understand this interactive relationship between robots and 

intangible capital, we refer to theories developed in the complementarity literature (Teece 1986, 

Adegbesan 2009, Brynjolfsson and Milgrom 2013), as well as to Pickering’s (1993, 1995) Mangle 

of Practice, which offers a conceptual framework to understand the dynamics of complementarity. 

 
1 For the purpose of this article, we examine labor productivity (see Graetz and Michael 2018, İmrohoroğlu and Tüzel 2014). 
Henceforth, unless otherwise stated, productivity in this article refers specifically to labor productivity, defined as output per 
worker.  
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This is important because existing studies tend to treat assets as either complementary or not, 

without entertaining if and how they become complements.2 

In particular, we explore the role of human and organizational capital in increasing robots’ 

productivity-enhancing potential. Both types of intangible capital are widely accepted as critical 

for economic performance (Black and Lynch 1996, Crespi et al. 2007). We develop our hypotheses 

based on firm level dynamics. Although the data we use for our analysis is collected at the firm 

level, the reporting is at the country-industry level. As such, we employ a two-pronged empirical 

strategy to mitigate the data aggregation issue and identify the effect of intangible capital on robot 

productivity. First, we use national and industrial level data to test our main hypotheses. Second, 

we attempt to account for firm level interaction effects by using instrumental variables to capture 

such industry competitive dynamics. We demonstrate that even after accounting for firm level 

interaction effects our main hypotheses hold. Our results show that robots indeed contribute to 

productivity, as does intangible capital, which is consistent with previous studies. In addition, we 

find that human and organizational capital moderates the effect of robots on productivity. This 

moderating effect differs depending on whether we consider the short or long term: human capital 

investment reduces the effect of robots on productivity in the short term but enhances it in the long 

term; investments in organizational capital increase the effect of robots on productivity in the short 

term but reduce it in the long term. Such an observation may be caused by the difference in the 

nature of human capital vis-à-vis organizational capital. Pickering’s Mangle of Practice provides 

the theoretical foundations for why this may be the case. Human capital predominantly affects the 

quality of the labor force; hence, its complementarity with robots is likely to be direct and bi-

 
2 Love et al. (2014) and Brynjolfsson and McElheran (2019) had alluded to the influence of time but did not explicitly discuss the 

development of complementarity over time. 
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directional. By contrast, organizational capital affects the firm’s organizational structure and 

business model, developing systems-based (or multi-directional) and indirect complementarity 

which affects multiple firm components. Our findings have implications for organizational 

structure and business model innovation in firms wishing to fully reap the potential productivity 

improvement from robot adoption.  

This article offers three main contributions. First, recent studies have highlighted that often new 

technologies are introduced to improve productivity which might not materialize without 

organizational changes (Sergeeva et al. 2020). We contribute to this literature stream with a 

nuanced understanding of the relationship between intangible capital and the effect of robots on 

productivity in the short and long term. In doing so, we provide a possible explanation for the 

slowdown in productivity growth that has been observed recently in major economies. Second, we 

contribute to the complementarity literature by showing the dynamics of the evolution of 

complementarity between new technology and intangible capital over time. Third, we contribute 

to the business model literature by showing how organizational capital investments influence 

productivity following the adoption of new technologies. 

The article proceeds as follows. Section 2 summarizes the current literature on the productivity 

gains brought about by robot adoption, intangible capital investment, and the formation of 

complementarity. In Section 3 we develop the hypotheses. In Section 4 we describe the data to test 

the hypotheses and the econometric methodology used to estimate quantitative relationships. 

Section 5 reports the results of the empirical analysis and how it supports the hypotheses. Section 

6 discusses the implications of our findings, and we conclude in Section 7.  
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LITERATURE REVIEW 

The adoption of robots has generally been shown to increase productivity at the industry sector 

level across countries, as well as at firm level. Graetz and Michael (2018) is perhaps the most 

comprehensive aggregate study in this area to-date, covering 14 industrial sectors in 17 countries 

over a decade. In an earlier study Kromann et al. (2011) employed a similar set of data and methods. 

Both studies find a positive association between robots and long-run productivity. Several other 

aggregate studies also report substantial productivity gains from robot adoption (Acemoglu and 

Restrepo 2018, Salomons 2018). 

The rapid development of software/programming capabilities, computing power, and other 

technological innovations in recent decades has vastly improved the usefulness of robots and 

widened their applicability. Robots have become virtually indispensable for certain high-end 

manufacturing industries such as automobiles and electronics. They are also deployed in hazardous 

environments, such as smelting and chemical engineering plants while increasingly permeating 

industries that were not traditionally heavy users of robotics such as agriculture (Reddy et al. 2016, 

Bechar and Vigeault 2017), though large-scale deployment remains challenging due to the 

agricultural environment being highly unstructured and heterogenous. In service settings such as 

in medicine, automated systems are used to reduce error rates (Aron et al. 2011).   

A number of studies have emphasized the role of human capital, and the training and skills 

necessary to fully benefit from robot adoption (Borenstein 2011, Wisskirchen 2017). A recent trend 

has been towards human–robot collaboration. For example, assistant robots can be employed in 

tasks such as carrying, handling, assembly, and measuring in manual environments. Even real time 

human–robot interactions are becoming feasible thanks to advancement in sensory technology 

(Kulić and Croft 2006, Van den Bergh et al. 2011). These developments greatly increase human 
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workers’ capacity to exploit their comparative advantage in perception, dexterity, and analytical 

decision-making (Hägele et al. 2001, 2002), but also the demand for complementary skills. 

Robotics has been associated with changes to organizational coordination to improve performance 

(Sergeeva et al. 2020), quality and value chain upgrading (De Backer et al. 2018), signalling an 

emergent General Purpose Technology (GPT) with radically new business models (Gambardella 

and McGahan 2010, Dixon et al. 2020) which require changes to firms’ organizational structures 

from supply chain logistics (Tesoriero et al. 2009, 2010, Serpa and Krishnan 2018) all the way to 

flexible manufacturing solutions (Geismar 2015). Human and organizational capital are thus 

important intangible assets, yet existing studies have not paid sufficient attention to their 

complementarity to robotic technological capital. Although they have been shown to augment robot 

productivity along with other intangible capital such as R&D and branding (Gómez and Vargas 

2012, Mutlu and Forlizzi 2008), the dynamic interaction with robotics is inadequately understood.  

The productivity enhancement of intangible capital is widely documented (Corrado et al. 2012, 

Marrocu 2011, Roth and Thum 2013).3 Becker (1962) pioneered the concept of human capital and 

that it accounted for a large proportion of cross-country economic disparity which differences in 

physical capital alone could not explain. Initially human capital emphasized formal schooling, but 

experiences, on-the-job training, and even tacit knowledge are increasingly viewed as vital 

components. Empirical studies demonstrate human capital to be an important driver of firm 

productivity (Black and Lynch 1996, Dearden et al. 2006, Kleis et al. 2012). The notion of 

organizational capital emerged later and encompasses various business practices, culture, processes, 

 
3 Corrado et al. (2012) empirically studied the role of intangible capital in the economy. They divided intangible capital into three 

broad categories. The first category is referred to as “computerized information,” which consists largely of software and database 

systems. The second category is “innovative properties,” which covers a diverse set of intangible capital encompassing R&D, design, 

financial innovation, mineral exploration, and artistic originals. The third is “economic competencies,” which include branding and 

advertising, organizational capital, and training (human capital).  
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and structural relationships with internal and external stakeholders (Black and Lynch 2005, 

Brynjolfsson and Saunders 2010, Ennen and Richter 2010). According to Haskel and Westlake 

(2018), organizational capital is a key input for the creation of new business models. New business 

models are effective at maintaining competitive advantage and productivity as the uniqueness of 

an organization is difficult to replicate (Brea‐Solís et al. 2015, Lieberman et al. 2017). Business 

models are difficult to replicate because they are complex systems consisting of many 

interdependent components such as the activities related to the customer value proposition, how 

value is created, the means of capturing value and the partners required in the value network (Velu 

2017).  

Studies have shown that organizational capital contributes to enhanced productivity at the firm 

level, albeit often requiring complementary technological inputs (Bertschek and Kaiser 2004 

Crespi et al. 2007). At the macro level however, productivity growth has declined even as 

investments in both intangible and technological capital dramatically increased. A possible reason 

may be the lack of effective complementarity between technology-intangible capital investments.  

The lacklustre growth in productivity at the economy level might be because new technologies 

have yet to establish widespread complementarity with business and organizational processes on a 

scale which pervades the entire economy and across multiple industries to become GPTs 

(Brynjolfsson et al. 2018).  

Studies on complementarity may be divided into two main classes4 (Ennen and Richter 2010). The 

first group investigates complementary assets via the interaction approach (Aral and Weill 2007, 

 
4 See seminal work by Teece (1986), which was one of the first systematic discussions of complementary assets and its effect on 

profitability. There are typically three forms of complementarity – strict complementarity where two asset functions together 

exclusively; weak complementarity whereby one asset enhances the performance of the other but they not required to function 

together; and super-modular complementarity whereby two assets enhance each other’s performance with positive feedbacks.  
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Bonaccorsi and Thoma 2007), which focuses on the interplay between specific categories of assets. 

The second group seeks to understand complementarity from a systems-based approach 

(Bresnahan et al. 2002, Hitt and Brynjolfsson 1997, Powell and Dent-Micallef 1997). We refer to 

the former as direct complementarity and the latter as indirect or systems-based complementarity. 

Systems-based complementarity tend to report larger magnitudes, which suggests that major 

productivity gains arise from complex systems interactions. The differential performance of 

otherwise similar firms may be primarily due to their different resource combination and hence 

complementarity rather than differential access to resources (Adegbesan 2009).  

The technological-intangible complementarity literature focuses on ICT (Brynjolfsson and Hitt 

2002, Bocquet et al. 2007, Gómez and Vargas 2012, Stucki and Wochner 2019, Saldanha et al. 

2020). Brynjolfsson and Hitt (2002) found that ICT contributed to more efficient and responsive 

organizational structures by reducing the cost of information sharing and coordination. The demand 

for complementary skilled labor also increased as a result. Milgrom and Roberts (1990, 1995) 

theoretically modelled the complementarity between technology and intangible capital, showing 

the conditions that favor firms’ joint investment in technology, human-resource, marketing and 

organizational inputs which cover a wide range of activities from production to sales. Brynjolfsson 

and Milgrom (2013) provided a detailed analysis of complementarity in the organizational context. 

Firms often face a plethora of simultaneous set of decisions such as technology adoption and 

organizational changes that display complementarity. Hence, these sets of decisions should be 

regarded as a complex interlocking system, where only altering one component of the decision can 

have unintended negative consequences on the performance of the firm. In addition, conflicts 

between old and new system practices can arise, and this may often be induced by the introduction 

of new technologies. Without proper business process redesign, company performance may even 
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be adversely affected by new technology (McAfee 2002). Brynjolfsson et al. (1997) investigated 

the transition from traditional to “modern manufacturing” in Johnson and Johnson. Due to the 

established organizational process being heavily geared towards reducing changeover times, new 

flexible production equipment remained employed for long, unchanging production runs – the 

opposite of what was intended. This was the result of decades of accumulated heuristics and implies 

that existing organizational capital is often a poor complement to new production technologies 

including robots. Instead, new organizational capital will need to fit with new technology and this 

was ultimately what Johnson and Johnson did by forming an entirely new team at a restarted new 

site, where fresh organizational approaches rooted in modern manufacturing techniques were 

introduced.  

A limitation of existing studies is the tendency to assume two assets to either be complements or 

not, negating the development of this relationship. Pickering’s (1993, 1995) Mangle of Practice 

offers a conceptual understanding of how two assets become complements over time. Pickering 

argued that the final outcomes that emerge are the cumulation of continuous interactive processes 

between various material and non-material (human) agents. Material agents refer to the functioning 

of the natural order, while non-material agents refer to human-directed forces, with the crucial 

distinction being that the latter possess intentionality. Pickering’s theory begins with human agents 

such as a scientist/engineer attempting to solve a particular problem through manipulating the 

passive forces of nature as a means to that end. However, many issues could not have been foreseen 

at the time and the material agents would generate resistance. In response, the human agents would 

seek solutions to accommodate them. Further problems may yet arise in time or as a consequence 

of the accommodation, leading to subsequent solutions being sought. This iterative process is 

termed “tuning” – analogous to the tuning of radio frequencies to the “correct” station. In addition 
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to material and human agents, Pickering identified disciplinary agency, which is concerned with 

the establishment of rules, relations, and cultures in human agents such that they become 

entrenched over time. This promotes continuity but also creates a degree of inertia on the actions 

and activities of the human agents.  In this context, the Mangle of Practice is consistent with the 

“logic of opposition” whereby opposing forces promote or impede change when studying 

technology-organizational relationships (Robey and Boudreau 1999).  

Several studies have applied the tuning concept to explain the interaction between material and 

human agents within the firm. Barrett et al. (2012) examined the interaction between three groups 

of workers (human agents) – pharmacists, technicians, and assistants – and the temporal dynamic 

materiality of an automated system (material agent), affecting the skills, discretion, status and 

visibility of the worker groups. Martini et al. (2013) explored the mangle process via the context 

of dynamic social media platform where the website (material agent) configured in response to the 

engagement of different users (human agent). Similarly, Venters et al. (2014) studied tuning in 

relation to a computer platform for a community of particle physics researchers. Venters et al. 

(2014) extended Pickering’s argument to temporal balancing between three goals for the past, 

present, and future. Ormerod (2014) investigated mangling in the UK energy sector. While most 

firm-level interaction is micro-mangle, Ormerod (2014) sought to apply the principle of macro-

mangle (Pickering 1995, pp. 232–4). Macro-mangling represents tuning at a systems-wide level, 

reflecting adjustments of the underlying environment, such as a change in business model or 

organizational structure. Therefore, Pickering’s mangle is a helpful theoretical lens to better 

understand the dynamics of the evolution of complementarity between assets over time. 
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HYPOTHESIS DEVELOPMENT 

We apply Pickering’s mangle to the context of robot adoption. The development of complementary 

assets with robot adoption over time may be illustrated as tuning between robots and firm workers, 

which represent material and human agency, respectively. The tuning process is affected by 

intangible capital, notably human and organizational capital. This is because human and 

organizational capital affect two critical functions of human agents – intentionality and disciplinary 

agency – respectively. Intentionality and disciplinary agency play a key role in the accommodation 

or adaptive process of human agents to the resistance of material agents, and it is this adaptation 

that gives rise to complementarity. Human and organizational capital, however, display different 

characteristics to their respective influence on the accommodation and adaptive processes.  

Robot and human capital complementarity 

Robot–human capital interaction is a form of direct complementarity, since human capital involves 

changes to mainly one component of the firm – the workforce – by improving the quality of the 

labor force. Although human capital may affect other firm components, such as via knowledge 

spill-overs, this happens indirectly (Battu et al. 2003).5 Therefore, its complementarity with robots 

is likely to be bi-directional.  

Following the introduction of new robots, many routine tasks become automated. Some workers 

might experience greatly diminished roles, in extreme cases being reduced to switching robots on 

and off (Noble 1986). This results in a reduction in workers’ discretion, which suppresses 

intentionality, which in turn limits the options for human agents to respond effectively. This also 

 
5 This is often the case for entire sectors, especially relating to technology, such as IT sectors. Tambe and Hitt (2014) found that 
IT firms benefit from one another’s investment in labor as a result of labor mobility between firms in clusters, contributing 
between 20% and 30% improvement in productivity.  
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stifles workers’ innovative and creative abilities, which are necessary for adapting to the changing 

role of employment (Cronshaw and Alfieri 2003, Molleman and Van den Beukel 2007).  

The suppression of intentionality may be compounded by a lack of capability on the part of the 

human agent. For example, workers may lack technical skills such as programming, practical skills 

such as cooperating with robots to exploit the division of labor, or human-oriented tasks such as 

design and management. Firms may therefore choose to invest in human capital such as training. 

The accumulation of human capital, however, would not be instantaneous but require tremendous 

input of resources. Workers are unlikely to be given discretionary authority until they become fully 

equipped, further hindering the adjustment process and causing workforce resistance with 

management (Courpasson et al. 2012).  

In the short term there are interrelated factors impeding robot adoption, which may be interpreted 

as resistance within Pickering’s framework. First, there is management’s inability to allow greater 

flexibility to workers to adapt to the new robotically automated environment, causing workers to 

lack discretion and/or capability to exercise their intentionality. Second, there is the disruption 

caused by diverting worker time towards new training. Therefore, in the short term the relationship 

between human capital and robots is likely to be dominated by resistance rather than 

accommodation. We therefore posit our first hypothesis, as follows: 

Hypothesis 1: In the short term, investing in human capital reduces the productivity-

enhancing effects of robots.  

In the long term, however, the investment in human capital will begin to yield payback. The human 

capital stock equips workers with the skills that, when combined with intentionality, produce 

effective accommodation to new robot installation. Such accommodation is achieved through two 



13 
 

mechanisms. First, there is the tendency for technology, when combined with human capital, to 

increase information-sharing, thereby devolving the decision-making process (Brynjolfsson and 

Hitt 2002). This encourages the input of workers at all levels of the firm, increasing their ability to 

work independently as the hierarchy is reduced. Second, the workers themselves also become more 

capable. Human capital displays a form of “adaptive complementarity” whereby initial investment 

tends to empower learning and adjustment in order to be more accommodative of the new 

robotically automated environment (Appelbaum and Albin 1989, Teixeira and Fortuna 2010). 

Therefore, human capital, once formed, becomes an asset to the firm, which generates positive 

direct complementarity with robots. We posit our second hypothesis as follows: 

Hypothesis 2: In the long term, investments in human capital increase the productivity-

enhancing effects of robots.  

Robot and organizational capital complementarity 

While human capital and robots display direct (bi-directional) complementarity, the 

complementarity of robots with organizational capital is systems-based and multi-directional. 

When new robots are installed, there is often a mismatch with the current organizational structure 

designed for a previous-generation technology, creating resistance, thereby limiting full efficiency. 

Sandberg et al. (2020) utilized complex adaptive systems (CAS) theory to explore the 

organizational shifts induced when platforms become automated and more digitalized. The 

increased dynamism and interconnectivity induced unexpected major architectural organizational 

change toward an ecosystem-oriented logic.  

In the short term, as an accommodation response, the management of the firm implements new 

organizational practices, structures and business models in order to align more closely with the 

robot-centric production model. The changes would need to be affected on the components of the 
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business model, including the content, structure and governance, in order to achieve better 

alignment with the new robotic investments. Such changes create a new disciplinary agency, with 

the establishment of new rules, relations, and cultures within the firm, which help with better 

alignment between the business model and the new robots. Therefore, investment in organizational 

capital empowers disciplinary agency and enables changes in the cognitive frame of the senior 

management, as well as the activity system of the business model. Hence new organizational capital 

and robots are complementary and we posit the third hypotheses: 

Hypothesis 3: In the short term, investments in new organizational capital increase the 

productivity-enhancing effect of robots. 

Disciplinary agency is invaluable in ensuring continuity yet by its very nature also instils 

organizational inertia in the long term. This hinders further organizational changes, even if they 

are necessary. The firm’s management could become locked into a cognitive mindset and might be 

unable to reframe. While an existing business model can be successful in commercializing the 

value of technology (Dmitriev et al. 2014, Gambardella and McGahan 2010), it can also create 

lock-in effects (Zott and Amit 2010). During times of emerging disruptive and discontinuing 

technology, such threats increase dramatically for incumbent firms (Rothaermel and Hill 2005, 

Tongur and Engwall 2014). This cognitive challenge means that the firm’s management is unable 

to reframe and adapt the business model accordingly (Velu 2017). Firms generally lack the ability 

to fundamentally reconfigure their functions architecturally due to internal resistance as what is 

best for the firm might not be optimal for any business unit (Velu and Stiles 2013). As a result, 

changes are typically piecemeal and strategically incoherent, the result of compromises whereby 

firms face the challenge of reconfiguration. 
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The organizational rigidity caused by disciplinary agency exacerbates both the cognitive and 

reconfiguration challenge in the long term. Hence, in contrast to human capital, organizational 

capital displays less “adaptive complementarity,” as disciplinary agency builds inertia into the 

business model system, which causes certain elements of legacy organizational capital to be 

unresponsive to the requirements of new robots. Based on this observation, we posit our fourth 

hypothesis: 

Hypothesis 4: In the long term, investments in organizational capital reduce the 

productivity-enhancing effects of robots. 

DATA AND METHODS 

Data 

We primarily utilize data from three sources – the International Federation of Robotics (IFR), 

Intaninvest (Corrado et al. 2016), and the European Union Capital Labour Energy and Materials 

(EUKLEMS) database. The first source supplies us with data on the deployment of robotics across 

various countries and industries; the second on expenditure in various forms of intangible capital; 

and the third provides other data necessary for the control variables, such as investment in physical 

capital.  

Error! Reference source not found. shows the temporal changes in the average values of key 

variables of our study. Average productivity in robot–using industries have increased only slightly, 

despite steadily rising levels of robot intensity for all countries, the five largest economies, and 

manufacturing, which highlights the “productivity paradox.”  Likewise, the stock of human and 

organizational capital has risen substantially.  
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------------------------------- 

Insert Figure 1 about here 

------------------------------- 

The IFR records the number of industrial robots deployed in each country, industry, and year. In 

order for a machine to be counted as a robot by the IFR, it must satisfy the International 

Organization for Standardization’s (ISO) definition ISO 8373 of being “an automatically controlled, 

reprogrammable, multipurpose manipulator programmable in three or more axes, which may be 

either fixed in place or mobile for use in industrial automation applications.” The EUKLEMS 

database standardizes across EU member states (as well as the US) regarding key economic metrics 

such as output, employment, and capital formation. It also covers input data such as wages and 

material costs. Both the IFR and EUKLEMS summarize data down to two-digit Standard Industrial 

Classification (SIC) codes and also cover similar time spans starting from the late 1990s.  

Similarly, Intaninvest harmonizes investments in intangible assets in the EU (plus US and Japan), 

broken down by sector and years. However, because of the data aggregation involved, Intaninvest 

reports data at one-digit SIC. Investments in intangible capital are broken down into three main 

categories consisting of “software and database,” “innovative properties,” and “economic 

competencies,” of which the latter two may be sub-divided further. We are primarily interested in 

the “economic competencies” category, which consists of “branding,” “organizational capital,” and 

“training”, and specifically the final two. The time period covered by Intaninvest runs from 1995 

to 2015 which is similar to IFR and EUKLEMS. We employ a panel data structure, with the cross-

sectional variable being specific country–industry pairs. We compile annual data for the period 

1995–2015 in 18 European Union (EU) countries. Our sectoral breakdown is based on five major 

industrial sectors (one-digit SIC) in order to use the Intaninvest data. 
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-------------------------------- 

Insert Table 1 about here 

-------------------------------- 

Table 1 lists all the countries and sectors included, which covers all the countries in the Intaninvest 

database. The EU-only analysis has the advantage of comparing countries that have relatively 

similar institutions and economic development, and which are increasingly integrated into a 

common economic zone. Unless otherwise stated, all variables are expressed as per labor unit (i.e. 

divided by employment size), and all monetary values are based on the 2010 price index, which is 

the base year specified in both the Intaninvest and EUKLEMS databases. The monetary values are 

also all based on Euros, which was introduced in 2002 across the Eurozone countries. Intaninvest 

and EUKLEMS have both reported and standardized pre-2002 values into Euro equivalents. Five 

countries in our dataset do not use the Euro – Czech Republic, Denmark, Hungary, Sweden and 

the United Kingdom. For these countries we converted the national currencies to Euro based on 

the 2010 exchange rate, the same as the base year. Table 2 provides a summary of the data that we 

use and the descriptive statistics. Table 3 displays the correlation matrix of the variables.   

-------------------------------- 

Insert Table 2 about here 

-------------------------------- 

-------------------------------- 

Insert Table 3 about here 

-------------------------------- 

Dependent and independent variables. For our dependent variable we use the Gross Value 

Added (GVA) obtained from the EUKLEMS database, which provides detailed sectoral values at 

national level for EU countries. When GVA is divided by the employment we obtain GVA per 
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worker, which is a standard measure of productivity. The main independent variable of robot stock 

is obtained from the IFR database. The IFR records shipment of industrial robots down to a two-

digit SIC code.6 In addition, the IFR produces values for the implied stock of industrial robots. The 

values were derived by assuming an effective life of 12 years. This measure of stock is problematic 

for two reasons. First, the life of many industrial robots is often much longer than 12 years, 

especially for newer generations of robots (though this does not account for the possibility of 

obsolescence as a result of, say, technological change). Second, the progressive deterioration of the 

robot is not accounted for during its lifespan. Instead we construct our own measures of robot stock 

based on the perpetual inventory method from the shipment data: 

𝑅𝑡 = 𝐺𝑡
𝑅 + (1 − 𝛿𝑅)𝑅𝑡−1                 (1) 

𝑅𝑡  and 𝐺𝑡
𝑅  refer to the stock of robots and shipment of robots at time 𝑡, respectively. 𝛿𝑅  is the 

constant rate of robot depreciation. We assume that 𝛿𝑅 is 10% as the default but also experiment 

values in the range of 5–15% as part of a sensitivity analysis, following the procedure of Graetz 

and Michael (2018). We find that the different depreciation rates assumed do not significantly 

affect our results.  

The other main independent variables of interest are the two forms of intangible capital – human 

capital and organizational capital, obtainable from the Intaninvest database. Human capital is 

proxied by expenditure in training at the firm level. As such this reflects training specific to the 

firms or the human capital workers received in work and not that already embodied by them, such 

 
6 As a result of this level of detail, for confidentiality purposes the IFR does not report the shipment values for any country–industry 

pairs consisting of four firms or fewer. Therefore, several country–industry values are discontinued temporally when the sector was 

small. For example, in a given year the shipment of robots to a particular country sector is omitted as a result of there being too few 

firms, but in the following year a value is reported when the country sector exceeds four firms. This would result in a spurious 

stepped “jump” in total robot shipment. In order to correct for this, we assume that the industry share of robot shipment in a country 

remains constant over time. Based on this share, we infer the missing year values of country–industry pairs from the years that they 

were reported, referencing the national aggregate shipment. This is also the approach adopted by Graetz and Michael (2018).  
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as general education and schooling (although this may affect the effectiveness of training). 

Organizational capital is available in Intaninvest as firm level (own-account, non-purchased) 

spending on organizational and business process re-engineering (Haskel and Westlake 2018). This 

would capture organizational restructuring which is associated with business model innovation, 

such as adding a new business unit to sell a new product line, or enhancing the existing business 

model such as servitization whereby manufacturers are increasingly providing new services for 

their products. For a description of the data in the Intaninvest database, please refer to Table 2. The 

Intaninvest reports only gross capital formation. We convert this into stock values for intangible 

capital using the perpetual inventory method similar to Equation (1). 

𝐼𝑡 = 𝐺𝑡
𝐼 + (1 + 𝛿𝐼)𝐼𝑡−1 + 𝐼0                     (2) 

𝐼𝑡 and 𝐺𝑡
𝐼 refer to the stock of intangible capital (human or organizational) and its gross formation 

at time 𝑡, respectively. 𝛿𝐼 is the constant rate of depreciation. Using the specifications set out in 

Carrado et al. (2012) and the manual in Intaninvest, we set the depreciation rate at 0.4 for both 

human capital (training) and organizational capital. 𝐼0 denotes the initial stock of intangibles. We 

obtain the 𝐼0 value by assuming the average ratio of fixed capital to human/organizational capital 

formation over the study period, inferring 𝐼0 using the stock of physical capital (from EUKLEMS) 

in the initial year (1995).7  

Control variables. For the control variables, we include software and the database from 

Intaninvest. The conversion to stock value also follows the perpetual inventory method assuming 

a depreciation rate of 0.315, which is the rate applied by EUKLEMS. This variable is included as 

 
7 This is likely to be an overestimate of 𝐼0 since investment in intangible capital on a major scale began much later than investment 

in physical capital. Nonetheless, the regression results are insensitive to values of 𝐼0, even when we assume 𝐼0 to be zero, an 

underestimate.    
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a control given the critical role that ICT plays in productivity. Most studies investigating the 

productivity effects of robots have included some measures of ICT (Acemoglu and Restrepo 2018, 

Graetz and Michael 2018). In addition, we include the value of the remaining intangible capital by 

subtracting training, organizational capital and software/database from the total value of intangible 

capital, as reported in Intaninvest. We include two other control variables from the EUKLEMS 

database. First, there is the stock of fixed or physical (tangible) capital, which is an important factor 

as specified in input–output relationships and production function theory. It remains the main 

source of capital in an economy or firm in terms of value, consisting of buildings, plants, equipment, 

and machinery. Second, we include the wage bill, which captures the renumeration to labor, another 

factor of production. These two control variables therefore jointly account for the determinants of 

fixed capital and labor and are also included in previous studies (Graetz and Michael 2018, 

Acemoglu and Restrepo 2020).  

Econometric model 

In order to test the hypotheses developed in Section 3, we construct an econometric model to 

formalize the relationship between our dependent, independent, and control variables. We specify 

the following econometric model in an attempt to reflect the short versus long-term complementary 

relationships between robots with human and organizational capital. 

ln(𝑦𝑖𝑡) = 𝛼0 + 𝛼𝑖 + 𝛽𝑟 ln(𝑟𝑖𝑡) + 𝛽ℎ𝑠∆ ln(ℎ𝑖𝑡) + 𝛽ℎ𝑙 ln(ℎ𝑖𝑡) + 𝛽𝑜𝑠∆ ln(𝑜𝑖𝑡) + 𝛽𝑜𝑙 ln(𝑜𝑖𝑡) +

𝛽𝑟ℎ𝑠∆ ln(𝑟𝑖𝑡) ln(ℎ𝑖𝑡) + 𝛽𝑟ℎ𝑙 ln(𝑟𝑖𝑡) ln(ℎ𝑖𝑡) + 𝛽𝑟𝑜𝑠∆ ln(𝑟𝑖𝑡) ln(𝑜𝑖𝑡) + 𝛽𝑟𝑜𝑙 ln(𝑟𝑖𝑡) ln(ℎ𝑖𝑡) + 𝛽𝑥𝑥𝑖𝑡 +

𝜀𝑖𝑡                                 (3) 

In the above equation all variables are expressed as per worker unit. 𝑦𝑖𝑡 is the dependent variable 

denoting output per worker; 𝑟𝑖𝑡 robot per worker; ℎ𝑖𝑡 human capital per worker; 𝑜𝑖𝑡 organizational 

capital per worker; and 𝑥𝑖𝑡 a matrix of control variables per worker. The terms 𝛼0, 𝛼𝑖 and 𝜀𝑖𝑡 refer 
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to the time-invariant intercept, individual-specific heterogeneity, and the error term, respectively. 

The subscripts 𝑖 and 𝑡 denote, respectively, the country–industry pair and time (year), while the 

coefficients are expressed as the 𝛽 values with various subscripts. The notation ∆ represents first-

difference or change. 

Previous studies have demonstrated the positivity of 𝛽𝑟, yet to the best of our knowledge no study 

has examined the moderating effects of human and organizational capital on robot productivity, as 

represented by 𝛽𝑟ℎ𝑠 and 𝛽𝑟𝑜𝑠 in the short term and 𝛽𝑟ℎ𝑙 and 𝛽𝑟𝑜𝑙 in the long term. This is because 

the first-difference terms reflect an incremental change and the instantaneous effect of the 

interactions on productivity. As a flow variable, the change in the interactions captures the 

investment, expenditure, or capital formation in the intangibles but also includes depreciation and 

can therefore be regarded as the net change in effective stock.8 The stock variable on the other hand 

reflects the cumulative activities over multiple periods and hence can be interpreted as reflecting 

long-run relationship.  

With Hypotheses 1 to 4, we expect the interactive coefficients to be of the following signs, 

respectively: 𝛽𝑟ℎ𝑠 < 0, 𝛽𝑟ℎ𝑙 > 0, 𝛽𝑟𝑜𝑠 > 0, 𝛽𝑟𝑜𝑙 < 0. 

We employ a fixed-effects panel data model to estimate the coefficients. The greatest advantage of 

this model compared to the random-effects model is the functional transformation, which 

eliminates 𝛼𝑖 , the time-invariant heterogeneity. Otherwise, we will be forced to assume that 

𝑐𝑜𝑣(𝛼𝑖, 𝜀𝑖𝑡) = 0 ∀ 𝑡, an often unrealistic assumption. 

 
8 Instead of 𝛽𝑟ℎ𝑠 ln(𝑟𝑖𝑡) ∆ ln(ℎ𝑖𝑡) and 𝛽𝑟𝑜𝑠 ln(𝑟𝑖𝑡) ∆ ln(𝑜𝑖𝑡), which is an alternative specification, we adopt the functional forms, 

as shown in Equation (3) above. This is because we wish to see the effect of new intangibles combined with new robotic equipment 
rather than with the old stock.  
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Addressing potential endogeneity on the productivity effect of robots 

As Graetz and Michael (2018) and other studies have identified, the relationship between robots 

and productivity may be subject to endogeneity bias. Endogeneity may occur for three reasons: 

first, via reverse causality, where most productive firms choose to pursue robotic automation and 

other technological upgrades in the first place, also known as the self-selection bias; second, the 

relationship between robots and productivity may be determined simultaneously; and, third, robot 

adoption may be correlated with some omitted variables, which are the real drivers of productivity.  

In an attempt to limit the potential bias in our coefficient estimates due to endogeneity, we employ 

an Instrumental Variable (IV) in a Two-Staged-Least-Squares (2SLS) panel fixed-effects model. 

We construct a metric of the percentage of the workforce that are potentially replaceable with 

robots. We do this by first matching the IFR robot “Application” list with occupations in the 

International Standard Classification of Occupations (ISCO) list at the three-digit level, which is a 

relatively detailed breakdown of occupations and roles. Any ISCO three-digit occupation that is 

matched is potentially replaceable by robots since they involve roles that are currently undertaken 

by robot applications, as listed in the IFR. Next, we aggregate the total amount of employment in 

the matched ISCO by one-digit SIC codes, which corresponds to our data in Intaninvest, for each 

country–industry–year, using the occupation–industry cross-tabulation employment figures 

provided by Eurostat through the Labour Force Survey. Finally, the total employment obtained in 

this way is divided by total employment to obtain an estimate for the percentage of the workforce 

potentially replaceable by robots. Note that this should define a lower limit given that the match is 

with current robots without accounting for technological improvements, which may substantially 

enlarge the list of tasks/applications performed by robots in the near future.  
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Accounting for firm level interaction effects 

Our hypotheses and the associated mechanisms are all described at the firm level, hence it would 

have been ideal to conduct the empirical analysis using firm level data. Whilst our data were 

collected at the firm level they are reported at the aggregate industry-country level. This may hinder 

direct observation of firm level behaviors. We attempt to mitigate this problem by accounting for 

two dynamic interactions at the firm level which may have industry level consequences. First there 

is likely to be inter-firm displacement. Firms which invest in robot and complementary intangibles 

may indeed substantially raise its productivity (and employment) but at the expense of competitors 

which do not invest. The net result at the industry level is either negligible or even negative 

(Acemoglu et al. 2020). Second, there may be positive spill-overs between firms due to competition 

where investments in robot and intangibles by one firm induces others to invest as well and hence 

raise the overall productivity relative to other industries. The degree to which firms interact in these 

two ways are likely to be influenced by a) structural shifts in an industry and b) firm concentration, 

as both of these factors provide an indication of the competitive dynamics between firms. We 

specify two IVs to measure a) and b) for which there are accessible data at the industrial level. 

These competitive dynamics are likely to impact firm responses in a systematic way at the industrial 

level which in turn affects both the displacement and positive spill-overs. The human and 

organizational capital are now treated as endogenous as our chosen IVs are likely to affect the 

investment decisions by altering their level of complementarity and rates of return (see 

Brynjolfsson and Milgrom 2013, pp. 45). Robot adoption is also treated as endogenous as the IVs 

may also influence technological decisions. 

For the first IV to measure structural shifts in an industry, we construct an index which captures 

firms’ business model changes. A recent paper by Wannakrairoj and Velu (2021) used the absolute 
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change in turnover to asset ratio (also known as the Asset to Turnover ATO ratio) to proxy for 

business model innovation by firms. A firm’s ATO ratio is likely to remain largely stable unless it 

undergoes significant changes. The ATO ratio may change significantly if a firm decides to 

radically alter its underlying business model. For example, a traditional bricks and mortar 

bookseller is likely to hold very large stocks of inventory in books and other assets which it owns. 

Consequently, it has a relatively low ATO ratio. On the other hand, an online book retailer with 

significant third-party suppliers will own a far smaller proportion of the inventory in central 

warehouses and perhaps use more robotics technology to help fulfil orders compared to a traditional 

bricks and mortar bookseller. Its business model may be similar to that of an online platform which 

generates revenue by charging commission from transactions. As a result, it has a higher ATO ratio 

compared to a traditional book retailer. Should a traditional bookseller decide to transform into an 

online seller or at least add e-commerce to its business model, then its ATO ratio may move in that 

direction. The reverse situation is also possible whereby an online book retailer invests in brick and 

mortar units to increase its physical presence.   

In order to approximate the absolute change in ATO ratio as measured in Wannakrairoj and Velu 

(2021), we gather data on the absolute change gross output (fixed) capital stock ratio at the industry 

level. Gross output and capital stock may be interpreted as the industry equivalent of turnover and 

asset, respectively. Firm level idiosyncrasies are unlikely to significantly affect the gross output to 

capital stock ratio, which will only change in response to major industrywide shifts in trends, such 

as e-commerce becoming more mainstream and adopted by most firms. The absolute change in 

gross output to capital stock ratio therefore signals structural shifts that should induce most firms 

to alter their business models in a similar way in response to robot adoption. Dixon et al. (2020) 

for example found that robot usage led to the decentralization of decision making for day-to-day 
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activities but centralization for strategic decisions. This suggests that firms have put in new flexible 

managerial systems to allow for the two processes simultaneously, hence the demand for 

organizational capital may increase. Furthermore, Dixon et al. (2020) reported a reduction in 

managerial relative to non-managerial staff and that robot is positively associated with training in 

professional and computer hardware training but not with managerial and office type training. This 

suggests higher demand for new training and human capital due to robots. The absolute change in 

gross output to capital stock ratio therefore is likely to affect human and organizational capital.  

For the second IV to measure firm concentration, we construct two Herfindahl-Hirschman (HH) 

indices to reflect the degree of firm concentration at the country and industry level in order to 

capture the competitive dynamics. These are expressed by Equations (4) and (5) below, 

respectively: 

𝐻𝐻𝑖𝑡 = ∑ 𝑠𝑖𝑐𝑡
218

𝑐=1                   (4) 

𝐻𝐻𝑖𝑡 = ∑ 𝑠𝑐𝑖𝑡
25

𝑖=1                   (5) 

Where 𝑐 = 1,2, … 18 denotes the countries in our dataset; 𝑖 = 1,2, … 5, the industries; 𝑠𝑖𝑐𝑡 denotes 

the share of firms of country 𝑐 in industry 𝑖, at year 𝑡; whereas 𝑠𝑐𝑖𝑡 denotes the share of firms of 

industry 𝑖 in country 𝑐, at year 𝑡. HH indices are frequently used to compute the degree of value 

concentration, with a range between 0 and 1, where 0 indicates perfect dispersion while 1 shows 

perfect concentration. 

This set of HH indices detect the extent to which firms in a given country/industry are clustering 

at these levels. High levels of firm concentration may exist in a few countries for a given industry, 

for example Germany is very dominant in manufacturing, while a particular country may have 

firms concentrated in a small number of industries. The former implies geographical clustering of 
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firms in an industry while the later indicates industrial specialization at the country level. These 

are likely to affect incentives to invest in intangible capital. For example, higher geographical firm 

clustering may mean greater competition which encourages rapid investments in technology 

(robots) and organizational capital to generate competitive advantages via their unique 

complementarity. It may on the other hand disincentivize firm specific training if there are 

significant positive externalities due to for example high risk of employee turnover to competitor 

firms. The degree of competition at the industry/country level is therefore likely to also impact 

human and organizational capital.   

RESULTS 

The results in Table 4 show that robot per worker is positively associated with productivity, in 

accordance with previous studies. The elasticity coefficients 𝛽𝑟  range from 0.204 to 1.076, 

comparable to that reported by Graetz and Michael (2018). This reinforces previous findings that 

robots contribute positively to productivity. 

-------------------------------- 

Insert Table 4 about here 

-------------------------------- 

The results in Table 4 are also in line with our hypotheses. We show the baseline non-interactive 

regression in Model 1, a reference to compare the other models. Models 2-5 show the interactive 

terms between robot and intangible capital which are central to our hypotheses. The interaction 

between robot and human capital in the short term is negatively and significantly associated with 

productivity, in accordance with Hypothesis 1 (𝛽𝑟ℎ𝑠 < 0). This is seen in the seventh row of Model 

2 where our result displays a negative coefficient (𝛽𝑟ℎ𝑠 = −0.334), significant at the 1% level. In 

the long term the results show positive and significant robot–human capital interaction in row eight 
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(𝛽𝑟ℎ𝑙 = 0.0284). This supports the predictions of Hypothesis 2 (𝛽𝑟ℎ𝑙 > 0). The interaction of 

organizational capital with robots is positive and significant with respect to productivity in the short 

term, as seen by the positive coefficients in row nine (𝛽𝑟𝑜𝑠 = 0.392), in line with Hypothesis 3 

(𝛽𝑟𝑜𝑠 > 0). Lastly, in the long term, organizational capital and robot interaction is negatively 

associated with productivity, as seen in row ten (𝛽𝑟𝑜𝑙 = −0.0527), in line with Hypothesis 4 

(𝛽𝑟𝑜𝑙 < 0). An important point to note is that the positive short-term complementarity between 

robot and organizational capital is considerably larger than the long-term complementarity between 

robot and human capital (0.392 vs 0.0284). The main control variables are also generally of the 

expected sign. Software and database, other intangible capital, fixed capital, and wages are all 

positively associated with productivity. 

In Model 3 we show our results when applying a 2SLS model, accounting for possible endogeneity 

between robot density and productivity. When robot per worker is instrumentalized with the 

proportion of jobs in a country-industry year which are automatable, the robot coefficient remains 

positive and significant. In fact, the magnitude is substantially enlarged from 0.237 to 1.076. Our 

hypotheses still hold as this model produces coefficients in the expected direction which are 

statistically significant with 𝛽𝑟ℎ𝑠 = −0.286 , 𝛽𝑟ℎ𝑙 = 0.0342 , 𝛽𝑟𝑜𝑠 = 0.313  and 𝛽𝑟𝑜𝑠 = −0.406 

for hypotheses 1 to 4, respectively. The coefficients are comparable to Model 2 with the exception 

of the fourth hypothesis where the negative interaction between robot and organizational capital on 

productivity is substantially larger (-0.0572 vs -0.406).  

In Model 4 the result shows a structural equation model where not only the robot but also the 

endogenous variables of human and organizational capital are treated as endogenous, which we 

attempt to exogenize using IVs to reflect the dynamics of firm interactions which may affect 

aggregate productivity. In this way we hope to overcome at least partially the limitation of using 
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aggregate data to test for theoretical constructs at the micro firm level. We also set robot density as 

endogenous, just like in Model 3. This is because it is very conceivable that structural and 

organizational changes induced by new business models for example may affect decisions to adopt 

new technologies, such as robotics. The results of Model 4 show that the coefficient for robot 

density remains very similar to the 2SLS model at 1.031 but much larger than Model 2. The four 

hypotheses also remain supported by the result, with coefficients of 𝛽𝑟ℎ𝑠 = −0.797 , 𝛽𝑟ℎ𝑙 =

0.0686, 𝛽𝑟𝑜𝑠 = 0.744 and 𝛽𝑟𝑜𝑠 = −0.408 all of which are significant to at least the 5% level. 

Compared to the previous Model 3, the absolute magnitudes of the coefficients are even larger 

often by a factor of 2-3. Model 5 is identical to Model 4 with the exception that robot density is 

treated as exogenous like in Model 2. Once again the coefficients of interest all conform to our 

hypotheses in terms of their signs and significant to at least the 5% level (the coefficients are 𝛽𝑟ℎ𝑠 =

−1.155, 𝛽𝑟ℎ𝑙 = 0.0847, 𝛽𝑟𝑜𝑠 = 1.060 and 𝛽𝑟𝑜𝑠 = −0.135, respectively).  

DISCUSSION 

Our analysis finds that robot per worker is associated with higher productivity at the country–

industry level in 18 EU countries between 1995 and 2015, in accordance with previous studies. In 

addition, the results support our hypotheses with regards to the different moderating roles of human 

and organizational capital in improving productivity from robots, for both the short and the long 

term. Robot–human capital interaction reduces robots’ productivity enhancement effect in the short 

term but increases it in the long term. The reverse relationship holds for robot–organizational 

capital interaction. The different dynamics shown by human and organizational capital are 

attributable to their different nature. We hypothesised that human capital functions as a direct 

complement, while organizational capital develops systems-based complementarity. These 

observations hold even when we apply a structural equation model to account for possible 
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interactions between firms. This is important since our data though originally collected from firm 

level accounts are reported as industry aggregates.  

Our findings reveal the influence of intangible capital in unlocking the full productivity potential 

of robots. Human capital acts as a catalyst to accelerate the “tuning” process and enables human 

agents to adjust to major technological installations such as robots by facilitating intentionality and 

capability. Organizational capital, on the other hand, creates new systems of organizational 

structures and business models to facilitate the new technology. However, in the long-term 

disciplinary agency is responsible for developing organizational inertia. This restricts further 

organizational changes to subsequent rounds of technological adoptions, making legacy 

organizational capital incompatible with the installation of new robots, similar to the Johnson and 

Johnson flexible manufacturing example Brynjolfsson et al. (1997) referred to. In other words, 

organizational capital compared to human capital is less able by itself to “tune” to the new 

technology and explicit managerial intervention may be necessary.  

Implications for theory 

Our study has important implications for future work relating to the adoption of robots and other 

technologies. First, the productivity enhancement effect of robots and other technology should not 

be considered in isolation. The complementarity with intangible capital is critical for reaping the 

full productivity potential. Second, attention should be paid to the type of complementarity that is 

likely to be formed, whether direct or systems–based. The former may be exemplified by robot–

human capital, and the latter by robot–organizational capital interactions. The distinction in 

complementarity types is applicable to the study of other intangible capital, such as branding and 

R&D, depending on the relevant technological context, as well complementarity between various 

forms of intangible capital.  
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Third, there is a need to understand the dynamics of how complementary relationships are formed, 

and not simply whether two assets are complements. This is particularly important, as studies have 

shown how social–technical systems should be understood from the perspective of 

complementarity (Teece 1986, 2014). Pickering’s theory provides a useful framework to assist in 

such an understanding. Initially, for various reasons, two assets may not be complementary, or 

worse, function as negative complements, due to the resistance of material and/or human agents. 

Over time however, positive complementary relationships can be established that facilitate the 

accommodation process. The reverse situation is also possible, whereby initially complementary 

assets become incongruent over time as previous synergy fades. The first situation is illustrated in 

this study by the relationship between robot and human capital, and the latter by the relationship 

between robot and organizational capital.  

Fourth, legacy organizational capital may embody rigidity which limits business model innovation, 

and which could be explicated through Pickering’s concept of disciplinary agency. In particular, 

the mechanisms through which the disciplinary agency changes in other scientific domains could 

contribute to a more nuanced understanding of cognitive and implementation challenges in the 

context of business model innovation following the adoption of digital technologies. 

Finally, the development of complementary relationships, or lack thereof, may partially explain the 

productivity paradox for robot-using sectors. Perhaps the right kinds of skills among the workforce 

have not yet reached its full technological maturity, restricting human-robot complementarity. 

More crucially perhaps, past organizational capital prevents the acceptance of new business models 

tailored to the requirements of more recent robotics technology. The much larger short-run robot-

organizational capital versus long-run robot-human capital coefficients suggest that 

complementarity which takes place at the level of entire organizations has the largest productivity 
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improvement potential, consistent with the findings of Ennen and Richter (2010). We may not 

witness substantial productivity gains from robots and other technology until and unless there is 

widespread complementary business model innovation.  

Implications for practice 

Our study sheds light on the need to incorporate intangible capital, particularly human and 

organizational capital, when firms adopt new robots and other technology. The interaction process 

however may create productivity enhancements or hindrance depending on the stage of the 

complementarity formation. Firms should treat complementarity as a cycle instead of a static 

process. For robot-human capital complementarity, the initial phase of the cycle may involve 

mostly hindrance before an enhancement, while the opposite is the case for robot-organizational 

capital. With regards to human capital, the greatest challenge for management is perhaps how much 

discretion to give to workers to exploit the newly acquired human capital while avoiding the risks 

associated with an entirely new robotic work environment. However, in order to reap the benefits 

of human capital investments, managers need to realize the advantages of allowing some level of 

delegated responsibility to workers in order to adjust to a set of new work practices to accommodate 

the robotic environment whilst maintaining control of the coherence of the processes. In addition, 

firms might find it challenging to develop consistent investment criteria for organizational capital. 

This is riskier, since, as an indirect and systems-based complement, it concerns multiple elements 

and the adjustment of complex relationships. Managers need to develop a more integrated 

coherence scorecard measure to assess system level complementarity of organizational capital 

investments (Velu 2020). 

Complementarity may be subjected to similar laws of depreciation and require periodic investments 

to maintain and enhance its effectiveness. If such is the case, complementarity should not be taken 
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for granted and firms need to actively maintain existing complementarity and/or invest in new 

complementary relationships, perhaps even managing a portfolio of complementary relationships. 

Where possible, firms should consider applying conventional investment and cost-benefit criteria 

to assess their degree of complementarity of assets. However, even conceptual identification of 

specific complementarities in firms can be challenging, let alone their objective quantification. 

Nonetheless, managers should endeavor to move in this direction, beginning to develop appropriate 

methodologies to assess complementarity of intangible and tangible assets in firms. Management 

should increasingly regard complementarity as an asset in and of itself.  

CONCLUSION 

In this study we have examined whether robots contribute to productivity, and whether this 

relationship is moderated by intangible capital – human and organizational capital. We find that 

robots contribute significantly to productivity, in accordance with previous studies. We also find 

that in the short-term human capital has a negative effect on the productivity enhancement of robots 

but a positive effect in the long term. The moderating effect of organizational capital is the precise 

opposite: a positive effect in the short term but a negative effect in the long term.  

Our study makes three main contributions. First, we contribute to a nuanced understanding of the 

relationship between intangible capital and the effect of robots on productivity in the short and long 

term. Second, we contribute to the complementarity literature by showing the dynamics of how 

assets become complements, or not, over time, depending on the type of complementarity. Third, 

we contribute to the business model literature by showing how organizational capital investments 

influence productivity following the adoption of new robotic technologies. In doing so, we provide 

a nuanced explanation of the recent productivity paradox. 
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The study begins to probe certain questions regarding the complex issue of robot adoption, its 

interaction with intangible capital, and the business model implications. With the growing 

realization of intangible assets, perhaps higher-resolution firm-level data will become available in 

the future to explore such a relationship in more detail. Robots present an immense opportunity to 

transform production, and as they continue to permeate all corners of the economy we may finally 

begin to witness rapid productivity improvements. This, however, is unlikely to happen without 

the complementarity of intangible assets, most notably of human and organizational capital.   
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Table 1. List of countries and industrial sectors included in the data 

List of countries included 

Austria; Belgium; Czech Republic; Denmark; Finland; France; Germany; 

Greece; Hungary; Ireland; Italy; the Netherlands; Portugal; Slovakia; 

Slovenia; Spain; Sweden; the UK 

List of industrial sectors included 
“Agriculture, forestry and fishing”; “Mining and quarrying”; 

“Manufacturing”; “Electricity, gas and water supply”; “Construction” 

 

Table 2. List of data variables, summary, and descriptive statistics at the country-industry 

level, 1995-2015 

No. Variable Description Variable type Unit Mean S.D. Min Max Source 

1 Productivity Gross value added (GVA) per worker Dependent 
Euros 

(2010) 
121,355 279,573 4,760 

3,391,23

9 
Intaninvest 

2 
Robot per 

worker 

Robot stock via perpetual inventory 

method, 10% depreciation, per worker 

Independent; 

endogenous 

Number 

of 

robots 

1204.78

3 

2712.93

1 
0 

18191.7

4 
IFR 

3 
Human capital 

per worker 

Stock of human capital (proxied by 

training) via perpetual inventory method, 

4% depreciation, per worker 

Independent 
Euros 

(2010) 
9,582 39,412 0 685,329 Intaninvest 

4 

Organizational 

capital per 

worker 

Stock of organizational capital via 

perpetual inventory method, 4% 

depreciation, per worker 

Independent 
Euros 

(2010) 
22,381 169,491 20 

4,320,42

9 
Intaninvest 

5 

Software and 

database per 

worker 

Stock of software and database capital per 

worker via perpetual inventory method, 

3.15% depreciation, per worker 

Control 
Euros 

(2010) 
2,859 4,854 0 66,991 Intaninvest 

6 

Other 

intangibles per 

worker 

Stock of remaining intangible capital, 

deducting human, organizational and 

software capital, per worker. Perpetual 

inventory method at 3% depreciation 

Control 
Euros 

(2010) 
24,960 45,427 5 406,429 Intaninvest 

7 Fixed capital 
Stock of fixed capital per worker, obtained 

from gross fixed capital formation (GFCF) 
Control 

Euros 

(2010) 

2,434,54

1 

7,935,73

8 
0 

76,026,1

10 
EUKLEMS 

8 Wage rate Wage or labor compensation per worker Control 
Euros 

(2010) 
27,369 20,360 708 123,400 EUKLEMS 

9 Employment Number of persons engaged 
For calculation (not 

in regression) 

Number 

of 

persons 

570,271 
1,084,52

0 
2,000 

8,040,00

0 
EUKLEMS 

10 

 

Potentially 

replaceable 

employment 

Proportion of workers potentially 

replaceable by robots by matching IFR 

robot applications with ISCO occupation 

list aggregated to the country-industry 

level 

Instrumental 

variable (for 

calculating 2SLS) 

Percent 14.39% 13.72% 0 67.69% 

Eurostat 

occupation-

sector 

tabulation 

11 

Absolute 

change in 

output to 

capital ratio 

The absolute change in the gross output to 

(fixed) capital stock ratio 

Instrumental 

variable (between 

firm interaction) 

Absolut

e 

change 

0.813 5.690 
0.00000

343 
80.790 

EUKLEMS 

(author 

constructed) 

12 

HH index of 

country firm 

concentration 

Herfindahl-Hirschman index of 

concentration of firms across industry at 

the country level 

Instrumental 

variable (between 

firm interaction) 

0-1 0.500 0.172 0.337 0.960 

EUKLEMS 

(author 

constructed) 

13 

HH index of 

industry firm 

concentration 

Herfindahl-Hirschman index of 

concentration of firms across country at 

the industry level 

Instrumental 

variable (between 

firm interaction) 

0-1 0.128 0.0385 0.0908 0.492 

EUKLEMS 

(author 

constructed) 
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Table 3. Correlation matrix of all variables 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1             

2 0.2522 1            

3 0.0929 -0.0232 1           

4 0.0056 -0.039 0.2588 1          

5 0.3428 0.1296 0.0697 0.0306 1         

6 0.7682 0.3053 0.059 0.0223 0.3799 1        

7 0.1447 0.0159 0.7343 0.2641 0.0211 0.0772 1       

8 0.5449 0.3189 -0.0505 -0.0704 0.5493 0.5944 -0.0366 1      

9 -0.1225 0.4969 -0.0712 -0.046 -0.0533 -0.0636 -0.1175 -0.0129 1     

10 -0.1904 0.279 -0.026 -0.0364 -0.1039 -0.0945 -0.1179 -0.0551 0.2901 1    

11 -0.0238 -0.0582 -0.0328 -0.0192 -0.0664 -0.0694 -0.0422 -0.1204 -0.0383 0.0678 1   

12 -0.1674 -0.2034 0.1702 0.2048 -0.2316 -0.166 0.1721 -0.311 -0.1743 0.0419 0.214 1  

13 -0.1688 -0.1797 0.0317 0.1069 -0.049 -0.2452 -0.0666 -0.3759 0.1117 -0.1423 0.1038 0.174 1 
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Table 4. Elasticity relationship of productivity with the independent, interaction, and control 

variables 

Dependent variable: GVA per worker Model 1 Model 2 Model 3 Model 4 Model 5 

Robot (𝛽𝑟) 
0.204*** 0.237*** 1.076*** 1.031*** 0.333*** 
(0.0174) (0.0283) (0.131) (0.213) (0.0978) 

Human capital 1st diff (𝛽ℎ𝑠) 
-0.128** -0.0457 -0.0493 2.288 3.823** 
(0.0536) (0.0543) (0.0669) (1.597) (1.824) 

Human capital (𝛽ℎ𝑙) 
0.124*** 0.120*** 0.198*** -2.093 

(1.289) 
-3.079** 
(1.416) (0.0106) (0.0129) (0.0198) 

Organizational capital 1st diff (𝛽𝑜𝑠) 
0.241*** 0.0896 -0.146* 0.360*** 0.409** 
(0.0538) (0.0552) (0.0767) (0.134) (0.171) 

Organizational capital (𝛽𝑜𝑙) 
-0.0285*** -0.0361*** -0.0111 -0.213 

(0.139) 
-0.361** 
(0.147) (0.00901) (0.00916) (0.0119) 

Robot x human capital 1st diff (𝛽𝑟ℎ𝑠) 
 -0.334*** -0.286*** -0.797** -1.155*** 
- (0.0420) (0.0523) (0.351) (0.380) 

Robot x human capital (𝛽𝑟ℎ𝑙) 
 0.0284*** 0.0342*** 0.0686** 

(0.0296) 
0.0847** 
(0.0341) - (0.00961) (0.0119) 

Robot x organizational capital 1st diff 
(𝛽𝑟𝑜𝑠) 

 0.392*** 0.313*** 0.744** 1.060*** 
- (0.0448) (0.0565) (0.315) (0.321) 

Robot x organizational capital (𝛽𝑟𝑜𝑙) 
 -0.0527*** -0.406*** -0.408*** 

(0.0842) 
-0.135** 
(0.0554) - (0.0171) (0.0572) 

Software and database (𝛽) 
0.0659*** 0.0715*** 0.0772*** 0.0471 0.0335 

(0.0189) (0.0186) (0.0229) (0.0341) (0.0427) 

Other intangible capital (𝛽) 
0.0473*** 0.0396** -0.0627** 0.0134 0.152 

(0.0168) (0.0166) (0.0256) (0.0798) (0.0959) 

Fixed capital (𝛽) 
0.0407*** 0.0361*** 0.0323*** 0.0276** 0.0219 
(0.00481) (0.00474) (0.00587) (0.0139) (0.0165) 

Wage (𝛽) 
0.216*** 0.260*** 0.192*** 0.334** 0.447** 
(0.0261) (0.0263) (0.0340) (0.169) (0.183) 

Intercept 
2.920*** 2.831*** 3.056*** 2.587*** 2.203*** 
(0.0662) (0.0660) (0.0882) (0.381) (0.372) 

N: 1800 

R2: 0.669 0.677 0.313 0.215 0.286 

*, ** and *** denote statistical significance at the 10%, 5% and 1% level, respectively
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Figure 1. Changes in values of key variables for robot-using countries and sectors 1995-

2015 
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