A holistic view of design for manufacture

Dr James Moultrie

Agenda ...

- A brief history lesson !
- Design for manufacture
- Design for assembly
- Product architecture
- Product platforms

A brief history lesson ...

Eli Whitney ...

- Originally a blacksmith: nails and hatpins
- Attended Yale in mid 20s
- Taught
- Worked on a plantation
 - Designed a machine to clean cotton
 - Did work of several people
 - But machine copied
 - Nearly ruined in court cases
- Penniless at 39

Source: www.eliwhitney.org/

Eli Whitney ...

- Took an impossible order to make 10,000 muskets at \$13.40 each
- Up to then, all rifles were handmade
- Invented the milling machine
- He created (arguably) standardised and interchangeable components
- Tolerances!

Source: www.eliwhitney.org/

Henry Ford ...

- 1907: assembly line
- divided manual assembly operations into short cycle repetitive steps
- Model T ford standardised parts, simplification
- Serviceability easy access for repair

"We start with the consumer, work back through the design and finally arrive at manufacturing"

Value analysis ...

- General Electric 1940
- Systematic review of product costs
- Initially applied to existing products
- Value engineering: applied during design phase

5 REASONS WHY Thousands Are **Replacing Their Old Refrigerators With New General Electrics Now**

GENERAL (%) ELECTRIC

1. Lowest Prices In History. Now you can buy a better G-E for about one-half the price of only a few years ago.

2. Better Food Preservation. New G-E Conditioned Air and Selective Storage Zones keep foods better.

3. Faster Freezing Speeds. New G-E freezes ice cubes 3 times faster than the earlier Sliding Shelves of Stainless models. And G-E Quick Trays make cube removal easy.

4. Lower Operating Cost. In 1927 the first G-E Sealed-in-Steel Mechanism revolutionized refrigeration costs. And, through constant improvement, today's famous Thrift Unit operates on only one third as much current.

5. More Usable Storage Space And More Conveniences. Adjustable Interiors. Full-width Steel. Interior Light. Tel-A-Frost Indicator. Thermometer.

OMPARE refrigerators feature by feature and you'll see why America is buying General Electrics at the rate of more than one a minute! These new refrigerators are the thriftiest, most complete G-E has ever built-yet prices are the lowest in G-E history! Deluxe 1940 models have controlled temperature and humidity and constant circulation of sweet, clean, freshened air. See them at your nearest General Electric dealer's! Sizes up to 16 cubic feet storage capacity are available on an easy monthly payment plan.

WE BELIEVE the new 1940 G-E Refrigerator to be the finest product of its kind ever offered-one that will cost you less to own than any other refrigerator at any price. (Signed) General Electric Co

Source: http://dismuke.net/howimages/gerefrig1940large.jpg

1960 onwards ...

- 1960s: Producibility & manufacturability
 - GE developed internal guide *"manufacturing producibility handbook"*
 - c. 1985 DfM came into wider use
- 1968: Systematic methods for Design for Assembly
 - Boothroyd & Redford: studied automatic assembly
 - Later Boothroyd & Dewhurst
 - Lucas Engineering Systems

1980's: Concurrent engineering ...

1990s DfX and Product architecture

- Df ... environment, safety, etc
- Product platforms
- Product architecture
- Modularity
- Reuse

Design for manufacture

Component optimisation

Component commonality Process selection Process optimisation

. Component

IfM

DFM elements ...

- Appropriate process selection
 - material, volume
 - tolerances, complexity
 - set up costs
 - expertise (internal / external)
- Reduce the number of process stages
 - eliminate and combining processes
 - reducing set up requirements
- Optimise for the process
 - recognise the process limitations
 - exploit benefits of the process
 - DFM process specific guidelines

Process guidelines ...

IfM

DESIGN FOR MANUFACTURABILITY / ASSEMBLY GUIDELINES INJECTION MOLDING © 2002 DRM Associates www.npd-solutions.com				
Raw Materials	16.0	No	Evention (Evelop atter	
Use standard material types colors and fills	Yes	NO	Ecceptor/Ecpiarator	
Consider recyclability of the insterial when selecting	H			
Substitute a material that is more e conomical				
Substitute a material that is easier to process				
Mark the part with the material to be used.				
General Avoid unnecessary part features & complex shapes - the yinvolve more complex tooling	Yes	No	Exception/Explanation	
Avoid unnecessary tolerances & finishes				
U se lowest cost equipm ent that provides need ed capability				
Part Ejection: Place gate & ejector pin locations on underside of part where blem is hes are least critical	Yes	No	Exception /Explanation	
Use draft angles to facilitate part removal. The draft angles should typically be > .5° m inimum; typically 1° to 2° for 5" depth. Use a greater angle with texture.				
Minimize surface area perpendicular to part line since greater surface area of walls & projections perpendicular to part line requires increased ejection force. Higher ejection forces require longer cooling times. Since cooling is 70%-80% of mold cycle, ejection force is an important DFM factor.				
Reduce ejection force requirement by: considering rib & projection height & surface area; use gussets instead of ribs; use larger draft angles, and polish the mold surface.				
Wall thickness:	Yes	No	Exception /Explanation	
Keep uniform - less than 15% variation				
Make transitions gradual				
Thicker walls require more cooling time; consider ribs as a structural alternative				
Comers:	Yes	No	Exception /Explanation	
Avoid sharp corners				
Maintain inner radii > .5 × wall thick ness			2	
Maintain outer radii >1.5 x wall thickness			5 <u>4</u>	
Maintain inner & outer radii around common center point				

Examples ... machined part guidelines ...

DO - Design holes to the shape of the tool. If a hole is to be tapped, provide space for it.

DO - Provide an undercut for threads in turned components

DO - Use standard dimensions wherever possible (NB - these may vary depending on the tooling available)

DO - Provide appropriate fillet radii (matched to tool tips) DO - Place holes away from edges - allow room for tool

Design for assembly

Assembly -

Sub-system optimisation

Assembly optimisation Component minimisation, handling, fitting, feeding

Component optimisation

Component commonality Process selection Process optimisation

Component

DFA - Design for Assembly ...

- Design guidelines or design rules
 - System level
 - Issue specific handling, fixing etc
- Systematic methods to analyse an assembly
 - Lucas Engineering & Systems
 - Boothroyd & Dewhurst
- Basic philosophy of all approaches
 - minimise the number of components
 - maximise ease of locating & joining

Don't fight gravity

Open enclosures

Avoid confined spaces Don't 'hide' key components

Assemble from a single direction

Integrate components ...

IfM

Systematic methods ...

- Functional analysis
 - Is each component needed?
- Handling analysis
 - Are the components simple to handle?
- Fixing analysis: Mapping assembly sequence:
 - Insertion / holding process
 - Securing / fixing processes
 - Additional (non-assembly) processes

Component functional analysis ...

Component handling & feeding ...

- Handling
 - Presentation of parts in manual assembly
- Feeding
 - presentation of parts in automated assembly
- Scores based on:
 - size and weight
 - specific handling difficulties
 - part orientation symmetry

Component handling ...

IfM

Ease of delivering, handling and orienting each component in preparation for assembly

	0	1	3	5	Score
Component size & weight	Convenient size One hand only	Small Fiddly or requires tools	Large / heavy 2 hands or tools	Very large / heavy 2 people or hoist	
Handling difficulties	No handling difficulties	Need care to grip Adherence, delicate, sharp / abrasive	Difficult to grip Flexible, untouchable, awkward	Tangling & severe nesting	
Beta (rotational) symmetry: about axis of insertion	Any orientation	Easy to orient: orientation easy to see and mistake proof	Tricky to orient: Orientation difficult to see but mistake proof	Difficult to orient: Orientation difficult to see – mistakes possible	
Alpha (end-to end) symmetry: perpendicular to axis of insertion	Any orientation	Easy to orient: orientation easy to see and mistake proof	Tricky to orient: Orientation difficult to see but mistake proof	Difficult to orient: Orientation difficult to see – mistakes possible	
				TOTAL HANDLING SCORE	20

Maximise symmetry ...

Fitting & fixing ...

- Insertion / holding process
- Securing / fixing processes
- Additional (non-assembly) processes
- Scores based on:
 - does it need a fixture?
 - The assembly direction
 - Alignment difficulties
 - Restricted vision or access
 - Insertion force
 - Etc.

Component insertion / holding process ...

	0	1	3	5	Score
Gripping / holding during insertion	Holding simple during insertion - no tools needed	Need tools to grip during insertion - but simple	Difficult to hold securely during insertion	No suitable / easy to access gripping surfaces during insertion	
Holding down	Self sustaining	g - stays in place withou	Needs holding in place – secured later		
View during insertion	Clear view during insertion	View partly obscured during insertion	View badly obscured during insertion	No view during insertion – feel only	
Access	Clear access during insertion	Partly obscured access during insertion	Badly obscured access during insertion	No access to insert	
Insertion direction	Straight line from above	Straight line, from side	Straight line from below	Not in a straight line	
Insertion resistance	No resistance	Light resistance	Significant resistance	Large resistance – need leverage	
				TOTAL INSERTION SCORE	25

Fixing / securing processes ...

	0	1	3	5
Threaded fasteners	No threaded fasteners	Self drilling / tapping screws	Stud / bolt & nut Screw	Nut, bolt & washer (separate loose parts)
Non-threaded fasteners	Snap fit or light push fit Rivet		Simple crimping or bending	Difficult crimping or bending
Soldered / Welded joints	No welded joints		Simple solder / weld	Difficult weld
Glued joints	No glued joints		Simple glued joint	Difficult glued joint

Fixing & joining ...

- Eliminate / minimise fasteners
 - Separate fasteners of same type
 - Different types fasteners
 - Avoid threaded fasteners
- Carefully position fasteners
 - Away from obstructions
 - Provide flat surfaces
 - Provide proper spacing between fasteners
- Simple fastening
 - Self fastening features
 - One handed assembly
 - Parts secured on insertion
 - Single linear motion
- Minimise assembly tools
- Parts should easily indicate orientation direction
 - Self alignment

IfM

Self orienting / no orientation needed

Additional (non-assembly) processes ...

	0	1	3	5
Additional screwing	No threaded fasteners		Some additional screwing	Significant additional screwing
Setting	No setting required		Simple / quick setting	Complex / slow setting
Test & measure	No testing & measuring		Easy / quick testing	Difficult / slow testing
Fill / empty	No filling / emptying		Simple / quick fill / empty liquid / gas	Complex / slow fill / empty gas
Re-orientation	No reorient	ation	Small reorientation	Significant reorientation

Product architecture

Functional elements \rightarrow physical elements ...

A product's architecture is the way in which the functional elements are assigned to the physical elements and the way in which these elements interact

Integrated product structures ...

Modular product structures ...

Product change ...

- Integral products
 - Changes to one element can result in changes to many others
 - A functional change demands physical change
- Modular products
 - changes can be made to isolated elements independently
- Design goal ...
 - Minimise **physical changes** to enable **functional changes**

Types of functional change ...

- **Upgrade**: more memory in a PC
- Add-ons: a new flash gun for a camera
- Adaptation: different power supplies for different markets
- Wear / maintenance: replacement razor blades
- **Consumption**: replacement film, or printer ink
- Flexibility in use: changeable lenses

Example: Cooke movie lenses ...

- Lots of commonality in production:
 - Common external mechanics, different lens and iris assemblies
 - Common parts
 - Common features on parts: different lengths, reuse of CAM
 - Common tool set: radii, thread forms, holes etc
 - Common processes: designed for single M/C tool
- Modularity: optical elements, lens to camera interface, Iris assembly

Product platforms

Volkswagen A-Platform

Audi A3

Audi TT coupe

Audi TT roadster

Seat Toledo Successor (Coupe, Saloon, Convertible)

VW Bora

IfNA

- Aprox 19 vehicles based on A-platform
 - VW estimates development and investment cost savings of \$1.5 billion/yr using platforms

VW Platform: common components ...

Source: Shimokawa, K., Jurgens, U., and Fujimoto, T. (Eds.), 1997, Transforming Automobile Assembly, Springer, New York.

IfM

Market segmentation grid ...

No leveraging ...

Unique products targeted at individual segments

IfM

Horizontal leveraging ...

Reuse of platform elements **across** markets, and within a segment

Vertical leveraging ...

Reuse of platform elements **within** a market and across segment

Beach-head leveraging ...

Horizontal and vertical reuse of platform elements across markets and across segments

Example: Cooke lenses ...

System architecture map

System roadmap ...

		2012	2013	2015	2021
Functionality	Simple	• A • B • C	• D • E		•F •G
	Middle	• P • Q • R	• S • T	• U • V	• W
	Advanced			• X • Y • Z	• X • Y • Z
Quetera	Simple	\square			
System architecture (schematic)	Middle				
	Advanced				
	Simple	New materials	New sensors		
Core technologies	Middle	Existing sensor	New materials	Communications RFID	
	Advanced			• GPS	Data loggingData management

UNIVERSITY OF CAMBRIDGE

When to consider platforms etc ...

UNIVERSITY OF CAMBRIDGE

Thank you ...

