A holistic view of design for manufacture

Dr James Moultrie
Agenda ...

- A brief history lesson!
- Design for manufacture
- Design for assembly
- Product architecture
- Product platforms
A brief history lesson ...
Eli Whitney ...

- Originally a blacksmith: nails and hatpins
- Attended Yale in mid 20s
- Taught
- Worked on a plantation
 - Designed a machine to clean cotton
 - Did work of several people
 - But machine copied
 - Nearly ruined in court cases
- Penniless at 39

Source: www.eliwhitney.org/
Eli Whitney ...

- Took an impossible order to make 10,000 muskets at $13.40 each
- Up to then, all rifles were handmade
- Invented the milling machine
- He created (arguably) standardised and interchangeable components
- Tolerances!

Source: www.eliwhitney.org/
Henry Ford ...

- 1907: assembly line
- divided manual assembly operations into short cycle repetitive steps
- Model T ford - standardised parts, simplification
- Serviceability - easy access for repair

“We start with the consumer, work back through the design and finally arrive at manufacturing”
Value analysis ...

- General Electric 1940
- Systematic review of product costs
- Initially applied to existing products

- Value engineering: applied during design phase

Source: http://dismuke.net/howimages/gerefrig1940large.jpg
1960 onwards ...

- **1960s: Producibility & manufacturability**
 - GE developed internal guide - “manufacturing producibility handbook”
 - c. 1985 DfM came into wider use

- **1968: Systematic methods for Design for Assembly**
 - Boothroyd & Redford: studied automatic assembly
 - Later Boothroyd & Dewhurst
 - Lucas Engineering Systems
1980’s: Concurrent engineering ...

- Idea
- Market development
- Product design
- Manufacturing process design
1990s DfX and Product architecture

- Df ... environment, safety, etc
- Product platforms
- Product architecture
- Modularity
- Reuse
Design for manufacture
DFM elements ...

• Appropriate process selection
 – material, volume
 – tolerances, complexity
 – set up costs
 – expertise (internal / external)

• Reduce the number of process stages
 – eliminate and combining processes
 – reducing set up requirements

• Optimise for the process
 – recognise the process limitations
 – exploit benefits of the process
 – DFM process specific guidelines
Process guidelines ...
DESIGN FOR MANUFACTURABILITY / ASSEMBLY GUIDELINES

INJECTION MOLDING

© 2002 DRM Associates www.rpd-solutions.com

Raw Materials

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Exception/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use standard material types, colors, and fills.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consider recyclability of the material when selecting.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitute a material that is more economical.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitute a material that is easier to process.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark the part with the material to be used.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Exception/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid unnecessary part features & complex shapes - they involve more complex tooling.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid unnecessary tolerances & finishes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use lowest cost equipment that provides needed capability.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part Ejection:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Exception/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place gate & ejector pin locations on underside of part where blemishes are least critical.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use draft angles to facilitate part removal. The draft angles should typically be > .5° minimum; typically 1° to 2° for 5° depth. Use a greater angle with texture.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimize surface area perpendicular to part line since greater surface area of walls & projections perpendicular to part line requires increased ejection force. Higher ejection forces require longer cooling times. Since cooling is 70%-80% of mold cycle, ejection force is an important DFM factor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce ejection force requirement by: considering rib & projection height & surface area; use gussets instead of ribs; use larger draft angles, and polish the mold surface.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wall thickness:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Exception/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep uniform - less than 15% variation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make transitions gradual.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thicker walls require more cooling time; consider ribs as a structural alternative.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corners:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Exception/Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid sharp corners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain inner radii > .5 x wall thickness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain outer radii > 1.5 x wall thickness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintain inner & outer radii around common center point.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples ... machined part guidelines ...

DO - Design holes to the shape of the tool. If a hole is to be tapped, provide space for it.

Don’t

DO - Use standard dimensions wherever possible (NB - these may vary depending on the tooling available)

Don’t

DO - Provide an undercut for threads in turned components

Don’t

DO - Provide appropriate fillet radii (matched to tool tips)

DO - Place holes away from edges - allow room for tool
Design for assembly
Sub-system optimisation
- Assembly optimisation
- Component minimisation, handling, fitting, feeding

Component optimisation
- Component commonality
- Process selection
- Process optimisation

Assembly

Component
DFA - Design for Assembly ...

- **Design guidelines or design rules**
 - System level
 - Issue specific - handling, fixing etc

- **Systematic methods to analyse an assembly**
 - Lucas Engineering & Systems
 - Boothroyd & Dewhurst

- **Basic philosophy of all approaches**
 - minimise the number of components
 - maximise ease of locating & joining
Don’t fight gravity
Open enclosures

Avoid confined spaces
Don’t ‘hide’ key components
Assemble from a single direction
Integrate components ...
Systematic methods ...

• **Functional analysis**
 – Is each component needed?

• **Handling analysis**
 – Are the components simple to handle?

• **Fixing analysis:** Mapping assembly sequence:
 – *Insertion / holding process*
 – *Securing / fixing processes*
 – *Additional (non-assembly) processes*
Component functional analysis ...

- **Relative movement**
 - Does the part move relative to parts which have already been analysed?
 - Y
 - N
 - Is the movement essential for the product to function?
 - Y
 - Y
 - Y
 - N
 - N
 - Must the part be separate to provide this movement?
 - Y
 - N

- **Different materials**
 - Is the part made of a different material to those with which there was no relative movement?
 - Y
 - N
 - Is the material difference essential for product function?
 - Y
 - Y
 - Y
 - N
 - N
 - Must the part be separate to satisfy the different material requirement?
 - Y
 - N

- **Need for adjustment / replacement**
 - Is the part separate to allow for maintenance, adjustment or replacement?
 - Y
 - N
 - Is the maintenance, adjustment or replacement essential?
 - Y
 - Y
 - Y
 - N
 - N
 - Must the part be separate to enable adjustment or replacement?
 - Y
 - N

- **Non essential ‘B’ component**
- **Essential ‘A’ component**
Component handling & feeding ...

- Handling
 - Presentation of parts in manual assembly

- Feeding
 - Presentation of parts in automated assembly

- Scores based on:
 - size and weight
 - specific handling difficulties
 - part orientation - symmetry
Component handling ...

Ease of delivering, handling and orienting each component in preparation for assembly

<table>
<thead>
<tr>
<th>Component size & weight</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenient size
One hand only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small
Fiddly or requires tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large / heavy
2 hands or tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very large / heavy
2 people or hoist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Handling difficulties</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No handling difficulties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Need care to grip
Adherence, delicate, sharp / abrasive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult to grip
Flexible, untouchable, awkward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tangling & severe nesting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beta (rotational) symmetry: about axis of insertion</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to orient:
orientation easy to see and mistake proof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricky to orient:
Orient difficult to see but mistake proof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult to orient:
Orient difficult to see – mistakes possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alpha (end-to end) symmetry: perpendicular to axis of insertion</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any orientation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy to orient:
orientation easy to see and mistake proof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricky to orient:
Orient difficult to see but mistake proof</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult to orient:
Orient difficult to see – mistakes possible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL HANDLING SCORE

20
Maximise symmetry ...
Fitting & fixing ...

- **Insertion / holding process**
- **Securing / fixing processes**
- **Additional (non-assembly) processes**

- **Scores based on:**
 - does it need a fixture?
 - The assembly direction
 - Alignment difficulties
 - Restricted vision or access
 - Insertion force
 - Etc.
Component insertion / holding process ...

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gripping / holding during insertion</td>
<td>Holding simple during insertion - no tools needed</td>
<td>Need tools to grip during insertion - but simple</td>
<td>Difficult to hold securely during insertion</td>
<td>No suitable / easy to access gripping surfaces during insertion</td>
<td></td>
</tr>
<tr>
<td>Holding down</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Needs holding in place – secured later</td>
</tr>
<tr>
<td>View during insertion</td>
<td>Clear view during insertion</td>
<td>View partly obscured during insertion</td>
<td>View badly obscured during insertion</td>
<td></td>
<td>No view during insertion – feel only</td>
</tr>
<tr>
<td>Access</td>
<td>Clear access during insertion</td>
<td>Partly obscured access during insertion</td>
<td>Badly obscured access during insertion</td>
<td></td>
<td>No access to insert</td>
</tr>
<tr>
<td>Insertion direction</td>
<td>Straight line from above</td>
<td>Straight line, from side</td>
<td>Straight line from below</td>
<td></td>
<td>Not in a straight line</td>
</tr>
<tr>
<td>Insertion resistance</td>
<td>No resistance</td>
<td>Light resistance</td>
<td>Significant resistance</td>
<td>Large resistance – need leverage</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL INSERTION SCORE
Fixing / securing processes ...

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threaded fasteners</td>
<td>No threaded fasteners</td>
<td>Self drilling / tapping screws</td>
<td>Stud / bolt & nut Screw</td>
<td>Nut, bolt & washer (separate loose parts)</td>
</tr>
<tr>
<td>Non-threaded fasteners</td>
<td>Snap fit or light push fit</td>
<td>Rivet</td>
<td>Simple crimping or bending</td>
<td>Difficult crimping or bending</td>
</tr>
<tr>
<td>Soldered / Welded joints</td>
<td>No welded joints</td>
<td>Simple solder / weld</td>
<td>Difficult weld</td>
<td></td>
</tr>
<tr>
<td>Glued joints</td>
<td>No glued joints</td>
<td>Simple glued joint</td>
<td>Difficult glued joint</td>
<td></td>
</tr>
</tbody>
</table>
Fixing & joining ...

- Eliminate / minimise fasteners
 - Separate fasteners of same type
 - Different types fasteners
 - Avoid threaded fasteners
- Carefully position fasteners
 - Away from obstructions
 - Provide flat surfaces
 - Provide proper spacing between fasteners
- Simple fastening
 - Self fastening features
 - One handed assembly
 - Parts secured on insertion
 - Single linear motion
- Minimise assembly tools
- Parts should easily indicate orientation direction
 - Self alignment
 - Self orienting / no orientation needed
Additional (non-assembly) processes ...

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional screwing</td>
<td>No threaded fasteners</td>
<td>Some additional screwing</td>
<td>Significant additional screwing</td>
<td></td>
</tr>
<tr>
<td>Setting</td>
<td>No setting required</td>
<td>Simple / quick setting</td>
<td>Complex / slow setting</td>
<td></td>
</tr>
<tr>
<td>Test & measure</td>
<td>No testing & measuring</td>
<td>Easy / quick testing</td>
<td>Difficult / slow testing</td>
<td></td>
</tr>
<tr>
<td>Fill / empty</td>
<td>No filling / emptying</td>
<td>Simple / quick fill / empty liquid / gas</td>
<td>Complex / slow fill / empty gas</td>
<td></td>
</tr>
<tr>
<td>Re-orientation</td>
<td>No reorientation</td>
<td>Small reorientation</td>
<td>Significant reorientation</td>
<td></td>
</tr>
</tbody>
</table>
Product architecture
System optimisation
Product architecture design

Sub-system optimisation
Assembly optimisation
Component minimisation, handling, fitting, feeding

Component optimisation
Component commonality
Process selection
Process optimisation

Whole product

Component

Assembly
A product’s **architecture** is the way in which the **functional elements** are assigned to the **physical elements** and the way in which these **elements interact**.
Integrated product structures ...
Modular product structures ...
Product change ...

- Integral products
 - Changes to one element can result in changes to many others
 - A functional change demands physical change

- Modular products
 - Changes can be made to isolated elements independently

- Design goal ...
 - Minimise **physical changes** to enable **functional changes**
Types of functional change ...

- **Upgrade**: more memory in a PC
- **Add-ons**: a new flash gun for a camera
- **Adaptation**: different power supplies for different markets
- **Wear / maintenance**: replacement razor blades
- **Consumption**: replacement film, or printer ink
- **Flexibility in use**: changeable lenses
Example: Cooke movie lenses ...

- Lots of commonality in production:
 - Common external mechanics, different lens and iris assemblies
 - Common parts
 - Common features on parts: different lengths, reuse of CAM
 - Common tool set: radii, thread forms, holes etc
 - Common processes: designed for single M/C tool

- Modularity: optical elements, lens to camera interface, Iris assembly
Product platforms
Product range
- Product range planning
- Platform planning

System optimisation
- Product architecture design

Sub-system optimisation
- Assembly optimisation
- Component minimisation, handling, fitting, feeding

Component optimisation
- Component commonality
- Process selection
- Process optimisation

Assembly

Product range

Whole product

Component
Volkswagen A-Platform

| Platform | VW | Audi | Skoda | Seat | Rolls-Royce/Bentley | Lamborghini | Bugatti?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sportwagen*</td>
<td>W12 Coupé/Roadster</td>
<td></td>
<td></td>
<td></td>
<td>Diablo SL/V</td>
<td>EB 110</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Luxuslimousine</td>
<td>A8 (Nachfolger)</td>
<td></td>
<td>Silver Seraph/Arnage*</td>
<td></td>
<td>EB 112*</td>
<td></td>
</tr>
<tr>
<td>B/C</td>
<td>Passat Plus Passat</td>
<td>A4/A6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Golf, Bora, Beetle</td>
<td>A3 TT Coupe/Roadster</td>
<td>Octavia</td>
<td>Toledo (Nachfolger)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A00/A0</td>
<td>Polo, Lupo</td>
<td>Al*</td>
<td>Felicia (Nachfolger)</td>
<td>Ibiza/Cordoba, Area</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Aprox 19 vehicles based on A-platform
- VW estimates development and investment cost savings of $1.5 billion/yr using platforms
VW Platform: common components ...

Market segmentation grid ...

Segment C

Segment B

Segment A

Market 1 Market 2 Market 3

Shared product platform / technology - common subsystems and interfaces
No leveraging ...

Unique products targeted at individual segments

Shared product platform / technology - common subsystems and interfaces
Horizontal leveraging ...

<table>
<thead>
<tr>
<th>Segment C</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market 1</th>
<th>Market 2</th>
<th>Market 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reuse of platform elements across markets, and within a segment

Shared product platform / technology - common subsystems and interfaces
Vertical leveraging ...

<table>
<thead>
<tr>
<th>Segment C</th>
<th>Segment B</th>
<th>Segment A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market 1</th>
<th>Market 2</th>
<th>Market 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Share product platform / technology - common subsystems and interfaces

Reuse of platform elements within a market and across segment
Beach-head leveraging ...

Horizontal and vertical reuse of platform elements across markets and across segments

Segment C
Segment B
Segment A

Market 1, Market 2, Market 3

Shared product platform / technology - common subsystems and interfaces
Example: Cooke lenses ...
System architecture map

<table>
<thead>
<tr>
<th>System architecture (schematic)</th>
<th>2012</th>
<th>2013</th>
<th>2015</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System roadmap ...

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2015</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>A, B, C</td>
<td>D, E</td>
<td></td>
<td>F, G</td>
</tr>
<tr>
<td>Middle</td>
<td>P, Q, R</td>
<td>S, T</td>
<td>U, V</td>
<td>W</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td>X, Y, Z</td>
<td>X, Y, Z</td>
</tr>
<tr>
<td>System architecture (schematic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>New materials</td>
<td>New sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>Existing sensor</td>
<td>New materials</td>
<td>Communications, RFID</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td>GPS</td>
<td>Data logging, Data management</td>
</tr>
</tbody>
</table>
Strategic

Product range
- Product range planning
- Platform planning

System optimisation
- Product architecture design

Sub-system optimisation
- Assembly optimisation
- Component minimisation, handling, fitting, feeding

Component optimisation
- Component commonality
- Process selection
- Process optimisation

Whole product

Assembly

Component

Tactical
When to consider platforms etc ...

- Platform Planning
 - Modularity
 - Component Commonality
 - Feature & Process Commonality
 - Consciously Different components
 - Unconsciously different components

- Product Strategy
- Requirements
- Concept design
- Detail engineering

Design Decisions
Thank you ...