

Institute for Manufacturing

Automation Assessment

"Making the Right Decisions about Automation"

Liz Salter, 14th November 2019

Introducing IfM

University of Cambridge, Department of Engineering

Introducing IfM

Introducing IfM Research

Introducing IfM Practice via ECS

"A rapid dissemination route for research and education outputs developed at the Cambridge University Institute for Manufacturing (IfM)"

- Industrial practitioners help companies of all sizes in all industries to apply research-based improvement techniques.
- · Practical solutions based on the latest applied research
- Live feedback to help set the agenda for new research
- An income stream to support future research activities
- Single point of access to relevant expertise
- Education programmes configured to client company needs and context

IfM ECS is a wholly owned subsidiary of the University of Cambridge

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

1. Motivation and background

- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

Motivation

- Labour costs keep going up
- Jack is off with strain injury again
- Keep get product returns with quality issues
- Bill & Fred retire at the end of the year!
- Industry 4.0 ? Data Sharing ?

Increased customer demand
New product launches
New technologies available
Joe wants me to look at some new robot

SMART

EXPO 🗗

FACTORY

 \bigcirc

Automation Projects Key steps

Top Level Business Aim:

To identify, develop and successfully implement appropriate automation solutions across the business.

Red dots = we find this difficult

Workshop exercise Poster and dot voting

"reduce headcount + improve operations"

External support sought to apply a structured approach and to stimulate higher level discussions around pros and cons

> Multi-site manufacture Flexible and changing footprint Limited design input Demanding customers

"modernise manufacturing
+ identify automation opportunities"

Seeking a method to categorise and prioritise multiple opportunities

Acquisition built growth Geographical expansion Cost reduction Mobility of manufacturing and of refurbishment

Experienced + expert automation team

multiple projects, multiple solutions "which one should we do?"

Schlumberger

Foxconn

Jaguar Land Rover Rolls-Royce

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

Top Level Business Aim:

To identify, develop and implement appropriate automation solutions across the business.

SMART

EXPO n

FACTORY

Motivation

- Labour costs keep
- Jack is off with stra

year!

- Keep get product r guality issues
 - quality issues
 •
 Support decision making around automation

 Bill & Fred retire at
 •
 Support decision making around automation
 - Help develop an automation strategy
 - Industry 4.0 ? Data Identify benefits, potential downsides and feasibility challenges

IfM ECS Automation Assessment Tool

ne

SMART

EXPO -

FACTORY

Support a structured and prioritised implementation pathway

Focus on enhancing existing production capabilities

Collaborative approach with in-house production engineers

 Building a model so that projects can be plotted and compared

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

The Automation Challenge Opportunity Balance

Automation Opportunities

Many benefits of automation

Automation downsides

But constraints may be introduced...

Considering opportunity

- What benefits would you hope to see from automation?
- What benefits have you seen from previous automation activities?
- What downsides would you anticipate with automation?
- What downsides have you seen from previous automation activities?

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

The Automation Challenge Feasibility Balance

Implementation Issues

Feasibility high / Easy

Space Services Expertise Solutions exist

Processes are "automatable"

Considering opportunity

- What makes automation easy?
 - Based on experience?
 - What has worked best for you?
- What makes automation hard?
 - Based on experience?
 - When have things not worked out as hoped?

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works
- 6. Application

 Building a model so that projects can be plotted and compared

The Automation Challenge Opportunity / Feasibility Balance

~20 Opportunity Criteria

Improve operator safety Reduce labour cost Increase production rate Reduce floor space requirement Improve product quality ~12 Feasibility Criteria Number of assembly operations Complexity of assembly operations Material delivery (logistics) Ease of integration

. . .

SMART

FACTORY

Automation Workshop Designing the model

Criteria fit	Do they apply here?					
	Do they align with current KPIs?					
	Should we adjust the wording?					
Criteria ranking	• What is the relative importance or the criteria?					
	 Agree rankings – High, Medium, Low 					
Criteria coverage	 Are there any new criteria? 					

"Shared understanding and agreement on what to look for when automating"

"Very good discussion to kick off a project"

"Good interactions"

"Definitely got a better appreciation of the factors to consider when implementing automation"

"Collaboration was very good"

"A lot of information was shared"

Automation Workshop Idea Generation

After the Workshop Developing a Scoring Model

- Rule sets are used for scoring Opportunity Criteria and Feasibility Criteria
- After the workshop IfM and client work together to:
 - 1. Confirm the project list
 - 2. Refine the rule set for consistent scoring

Opportunity Criteria very good t		gh o automate provement here	Medium some potential benefit may improve this criteria		Low no benefit anticipate no impact on this criteria		Negative bad to automate		
Right first time	Enhancement in capat yield and reduce scrap May generate IP adva	and rework costs.	May improve manufacturing capability in non-critical areas.				Automation solution likely to degrade manufacturing capability.		
	Feasibility Criteria	Easy easy to automate		Medium neutral		Difficult hard to automate		Zero impossible / insane	
Ergonomics	Number of operations	Low number of discreproduction station (< Repeated or duplicate	3). production station		of operations within a n (3 to 5).			Very high and variable number of different and changing operations.	
Manual tracking		carry out the same task in house or in same		carry out similar task but in different industry				Solution not readily available (fundamental technologies do not exist, long term research).	
	Operation difficulty	Current operators wil working with new solu required.	l be easily capable of ution with minimal training		s will require some in-house ly skilled people could be	locally.	kills not available in house or and training will be required.	Global ski	ills shortage

Using the outputs

IfM ECS Automation Assessment Tool

Key characteristics:

- Developed with, and applied in, a wide range of manufacturing businesses
 - Different industries
 - Different levels of automation expertise
- Structured approach
- Identify, rank and score the pros and cons of automation

Opportunity

 Identify, rank and score – the likely + ease of implementation

UNIVERSITY OF CAMBRIDGE Department of Engineering

Feasibility

Deliverables:

- Clear view of the relative attractiveness for a range of different automation options
- Detailed understanding of what underpins the scores
- Provides the basis for recommendations "Decision support"

"set up an effective platform among Foxconn facilities to evaluate automation potential"

- Clarified automation objectives
- Gave focus and direction to the international automation team
- Stimulated higher level discussion of automation benefits and issues
- Structured assessment approach adopted across global operations
- Highlighted important differences between sites and products
- Company-wide picture enabling consistent analysis for multisite manufacture

- Highlights plant level priorities
- Captures project interdependencies & benefits of combining projects
- Compares different centers
- Provides company-wide picture and consistent approach
- Method to share knowledge and experience
- Global roll out

Useful resource for JLR

First step when considering the implementation of automation

- Logical and structured way of considering automation opportunities
- Highlights benefits and drawbacks that were previously unconsidered

"a good visual method of summarising the findings of the study"

Foxconn

Jaguar Land Rover

SMART

FXPO 🗖

FACTORY

- 1. Motivation and background
- 2. Tool overview
- 3. Opportunity discussion
- 4. Feasibility discussion
- 5. How the tool works

6. Application

Working with IfM

- Scoping is key
- Work with operations team
- Tailor the tool / approach
- Work with available data
- Run workshops
- Equip team for deployment

EXPO n

Typical Project Flow

Contact

Liz Salter 07787 323616 <u>es513@cam.ac.uk</u> Institute for Manufacturing Department of Engineering 17 Charles Babbage Road Cambridge, CB3 0FS United Kingdom

T: +44 (0) 1223 766141

E: ifm-enquiries@eng.cam.ac.uk

@ifmcambridge

@ifmcambridge

- /institute-for-manufacturing
- /ifmcambridge

in

