MET: Creating future leaders

The Manufacturing Engineering Tripos is a unique two-year programme that combines technology with management, and theory with application to prepare students for leadership roles in manufacturing and engineering. The course will develop your understanding of how the engineering, financial, organisational and human aspects of firms work. This spans all aspects of the firm, from the design of new products, materials and production technologies, industrial engineering, through to marketing, business strategy and operations management. The course has an international flavour, with many students involved in activities with other European students of manufacturing through the ESTIEM organisation. Students in their 4th year also organise an international study tour, and in recent years have visited Scandinavia, Korea, Trinidad & Tobago, Singapore & Malaysia, India, Brazil, China & Japan and the USA. This year the students are planning a tour in the Netherlands.

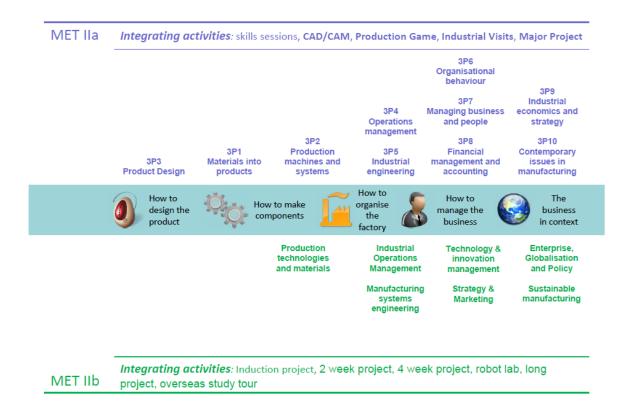
When students finish the course they are much sought-after for a wide range of demanding jobs, not only in industry, but also in other branches of engineering, consultancy or commerce. Students are also well placed to start their own companies, having not only gained a thorough understanding of how business works, they have a sense of empowerment and a strong entrepreneurial drive.

The MET course is based in the Institute for Manufacturing (IfM), Alan Reece Building at the West Cambridge site, close to the Department of Computer Science, the Cavendish Laboratory the Department of Chemical Engineering and Biotechnology and the Department of Materials Science and Metallurgy. Our building has dedicated MET lecture rooms, a design studio, a student study room, workshop facilities and a robot laboratory, all for use by the MET students. MET members are treated professionally, and are encouraged to use the large common room space with other members of staff, academics and researchers. MET students recognise that the course is special because of the unique blend of engineering, technology, theory, practical application and professional development that the course offers.

For full details of the course, go to www.ifm.eng.cam.ac.uk/met/ e-mail: met-admin@eng.cam.ac.uk

Application and Selection

Selection for MET is based on the candidate's potential to thrive on the course. The qualities being sought include:


- Technical knowledge and abilities: materials, design, production methods
- Personal skills: enthusiasm, communication, organisation, teamwork, and an ability to work to tight deadlines
- Leadership potential: in industry, management, manufacturing and commerce

All candidates must complete an application form and we will also look at your academic track record and your reference from your Director of Studies. All candidates will be invited for a short interview. Applications are also welcomed from second-year students reading Chemical Engineering and other related science based Tripos. If you are interested in applying, please complete the application form and return it to the IfM Teaching Office by Monday 3 June 2019 at the latest. Engineering students should also put down MET on their COMET entry. Interviews will be held week commencing Monday 10 June 2019; other times by arrangement. We will let you know the result of your application soon after the IB examination results are known. The application form is available here: http://www.ifm.eng.cam.ac.uk/education/met/application/

Current MET students are always happy to provide a student view of the course, and list of contacts is given at the end of this document.

Academic structure of the course

MET is very different to other Engineering options. The course provides a sound theoretical basis in manufacturing technology, manufacturing engineering and business management, coupled with the repeated experience of putting theory into practice via a series of projects. MET students develop valuable skills in leadership, problem solving, team working, communication - 'making things happen' - which ensure they are highly prized by employers. MET demands hard work, teamwork and initiative. The course generates a high level of esprit de corps and an ethos of self reliance, resulting in a strong sense of group identity - and fun! The graphic below aims to summarise the core content of both MET IIA and MET IIB.

3rd Year: MET IIA

The first year of the course is Cambridge-based and consists of ten modules with integrated coursework. The modules reflect the range of technical, managerial and contextual issues relevant in modern manufacturing firms and are summarised below.

A distinctive feature of the course is the Business Skills Development Programme which includes visits to leading firms, master-classes (e.g. in industrial design, patents and Intellectual Property), and personal skills development (e.g. team-working, presentation skills, time-management).

The course follows normal Cambridge terms, and has the standard undergraduate structure of supervisions. You will be based at the Alan Reece building for at least half of each week. Some blocks of lectures will take place at Trumpington Street, allowing easy access to central facilities such as libraries. Students are also offered the opportunity to gain workshop experience.

3rd Year modules:

Module number	Module Title	Module Scope
3P1	3P1 Materials into From microstructure to mechanical pr	
	Products	manufacturing process optimisation for all classes of solids
3P2	Production Machines	The specification, operation and management of
	and Systems	production machines and systems
3P3	Design	Integrating engineering and industrial design in the
		creation of new products.
3P4	Operations	The management of material and information flow in the
	Management	supply chain
3P5	Industrial Engineering	The design of production flows and operations in
		manufacturing
3P6	Organisational	An introduction to the theory of organisational behaviour
	Behaviour	
3P7	Managing Business	An introduction to the processes involved in starting and
	and People	running a business.
3P8	Financial and	An introduction to the principles and practice of financial
	Management	and management accounting.
	Accounting	
3P9	Industrial Economics,	An introduction to the principles and practice of industrial
	Strategy and	economics, strategy and corporate governance.
	Governance	
3P10	Contemporary Issues	(a) Integrative industrial visits to study modern
	in Manufacturing	manufacturing practice.
		(b) Lectures to introduce current topics.

Integrated coursework: Major design project

The integrated coursework seeks to bring together issues from across the modules, and apply them in a practical way. This includes a major design project, a production simulation and a CAD/CAM and manufacturing exercise.

The major design project is a group project that lasts through the whole year. Groups design a new product and develop a comprehensive business plan. Professional advice is provided on how to set up and finance a small company. Some of the student groups have turned their project into reality, setting up their own companies and going into production. Projects have included the design of a pod for autistic children, a device to enable blind people to sense their environment, a water filtration system for the 3rd world, an ergonomic pipette, a novel water pistol, a 3D cinema system for the home and a device to enable deaf people to perform with music. Students are encouraged to build working prototypes to demonstrate the feasibility of their designs. The major design project concludes with a Design Show, featuring all the projects, and attended by industrialists, entrepreneurs and designers. For many students, this is the highlight of the year.

Industrial visits

Throughout Michaelmas and Lent terms, students visit 6 firms, representing a diverse section of manufacturing in the UK. This will include: primary processes (e.g. Steel making), automotive, aerospace, electro-mechanical, specialised processes (e.g. Electronics and bio-tech) and FMCG (e.g. Food and consumer goods).

Business skills development programme

The skills development programme is a structured series of practical workshops designed to develop some of the personal skills critical for success in industry and related employment.

4th Year: MET IIB

The structure of the final year of the course is very different from a standard undergraduate course. Teaching is organised in intensive modules, interspersed with **periods in industry** normally outside Cambridge doing real industrial projects. Terms are a little longer than standard Cambridge teaching terms, and learning is achieved through seminar-style sessions and practical experience, rather than from formal lectures. MET IIB operates entirely from the new building at West Cambridge.

4th Year Modules

The modules cover the full range of manufacturing industry, including core modules on practical and operational aspects of manufacturing technologies and operations; operations management at the enterprise level and human resources and management. The lectures are strongly practically-oriented, and are often delivered by leading industrialists. There is also an extended exercise involving the design and build of an automated system to carry out simple assembly tasks.

Module	Scope	Duration
Enterprise, globalisation and policy	Understanding the international context in which manufacturing businesses work	2 days
Production technologies and materials	Current and future practice in selecting and using materials and production technologies	2 weeks
Manufacturing systems engineering	Understanding the operation of automated manufacturing systems	1 week
Sustainable manufacturing	Issues in managing a sustainable global business.	1 week
Industrial Operations Management	Understanding how an organisation manages its physical assets (e.g. machinery) to enable efficient supply networks and effective service provision	2 weeks
Technology and innovation management	Understand the processes of innovation and technology management	1 week
Strategy and marketing	Marketing, brand and business strategies	1 week

Industrial projects

Students undertake industrial projects based in leading UK manufacturing firms, which allows students to apply material studied in the modules. In Michaelmas term, pairs or small groups of students undertake a three-day, then a two-week project in industry, normally away from Cambridge, working on a real problem for a company. In Lent term, students are away for 4 weeks working on more substantial projects in industry. In the Easter term, students have the chance to design and run their own 'Long project' that can be based in Cambridge, elsewhere in the UK, or even overseas. Support and guidance is provided throughout all projects, and the Cambridge supervisor keeps in close contact and visits the students in their company. However, it is expected that students will use their own initiative and skills. At the end of each project, the students make a presentation of their findings to the company, to an audience that may include senior managers and shop-floor workers. The full written report is completed a few days later.

Examples of some recent projects are summarised below.

Examples of recent industrial projects

Company	Project	
Coty	Yield improvement in cosmetics manufacture	
Rolls Royce	Optimised assembly for Trent XWB aircraft engine	
Sea France, Dover	Design of a system for holding motorcycles on ferries	
Airbus	Long-term manufacturing strategy for tooling	
Mercedes	Design of battery cell production facility.	
Linx Printing Technologies, St Ives.	e-commerce feasibility study.	
Fitzwilliam Museum, Cambridge	Design of a new coin cabinet for conservators	
Holotag, Cambridge Science Park.	Analysis of competitors: Israel and Germany.	
Amman, Jordan	PET bottle recycling	

Automation laboratory

The automation laboratory is a practical team exercise, supporting the Manufacturing Systems Engineering module. The module aims to provide the theoretical background and underpinning to the practical session. In the laboratory, students apply the principles of planning automation, CAM/CNC, programming logic controllers, robotics, sensors, pneumatics and mechatronics.

For more information

For more information, please come to our recruitment event on <u>Wednesday, 8 May 2019</u>. This would be an opportunity to tour the MET building (IfM, 17 Charles Babbage Road, West Cambridge CB3 0FS) and meet staff who teach the course. The event is from 1pm-3pm, with a MET talk at 1.15pm followed by a tour of the building.

You can also ask one of the students directly (see the table below). Our web pages include a comprehensive summary of the course. You are also very welcome to contact us directly.

IfM teaching Office: The MET Senior Administrator is Mrs Shane Strawson, and she can be contacted via met-admin@eng.cam.ac.uk and (7)60531.

Dr Chander Velu: MET IIA Course Director (cv236@cam.ac.uk)
Dr Ajith Parlikad: MET IIB Course Director (aknp2@cam.ac.uk)

College Contacts who are happy to provide a student view of MET

College	Name	Email (add @cam.ac.uk)
Churchill	Nicholas Reyner (METIIB)	nr413
	Dylan Bogod (METIIA)	djpb4
	Taejoo Kim (METIIA)	tk492
	Jordan Thornton (METIIB)	jtt28
Clare	Harriet Caisley (METIIA)	hrc36
	Darius Danaei (METIIA)	dd481
Corpus Christi	Becca Clarke (METIIA)	rjc204
	Cathleen Law (METIIA)	hkcl2
Downing	Alice Wang (METIIB)	zw308
	Tami Austen-Peters (METIIA)	oaa39
Emmanuel	Katherine Cook (METIIB)	kc488
	Toby Lane (METIIB)	tl419
	James Wood (METIIB)	jw913
Fitzwilliam	Fraser McKay (METIIB)	fm432
	Ryan Ng (METIIA)	rchn2
Girton	Hugo Gale (METIIB)	hwg23
	Anna Quincey (METIIB)	aeq20
	Kate Read (METIIB)	kr418

	Harris Ryder (METIIB)	hr377
	, ,	tw433
Openius and Opins	Tom Wilson (METIIB)	
Gonville and Caius	Joshua Thomson (METIIB)	jt610
Homerton	Kyung Mo Koo (METIIA)	kmk38
	Owen Underwood (METIIA)	ou213
Jesus	Phil Knott (METIIB)	prk29
	Aleks Mardinian (METIIB)	ansm2
	Callum McCarthy (METIIB)	cm831
	Agnes Fung (METIIA)	alsf3
	Abdi Omar (METIIA)	ao418
	Shwan Rasoul (METIIA)	sr794
	Christian Repole (METIIA)	cr585
Kings	Josh Shemtob (METIIB)	js2230
	Patryk Balicki (METIIA)	ppb28
Magdalene	George Barbantan (METIIB)	gmb54
Murray Edwards	Imogen Helleur-Connor (METIIB)	ic318
(New Hall)	Georgia Semple (METIIA)	gs571
Newnham	Erica Lee (METIIA)	cyel2
Queens'	Rob Glew (METIIB)	rg522
	Jonathan Heywood (METIIA)	jdh72
Robinson	Dami Adebayo (METIIB)	dada2
	Valentina Sassow (METIIB)	vs412
	Sian Evans (METIIA)	sie22
	Anirudh Govil (METIIA)	ag940
	Akhil Sonthi (METIIA)	as2666
Selwyn	Matt Escott (METIIB)	mce32
	Daniel Hyman (METIIA)	dmh58
	James Lee (METIIA)	wkjl2
Sidney Sussex	Miran Gilmore (METIIB)	mag74
	Shirley Ngan (METIIB)	sysn2
	Robbie Blythe (METIIA)	reb82
	Owen Chen (METIIA)	ogc22
	Rory Dyer (METIIA)	rd540
	Georgia Everest (METIIA)	ge269
St Catharine's	Hanesh Patel (METIIB)	hp384
St Edmunds	Gijsbert Dompeling (METIIB)	gghkd2
St John's	Skye Fletcher (METIIB)	sf550
	Theo Heymann (METIIB)	trh41
	Ben Weir (METIIB)	bw374
	Lin Bowker Lonnecker (METIIA)	lb707
Trinity	Helen Shao (METIIA)	hs637
Trinity	Alex Watson (METIIA)	aw726