

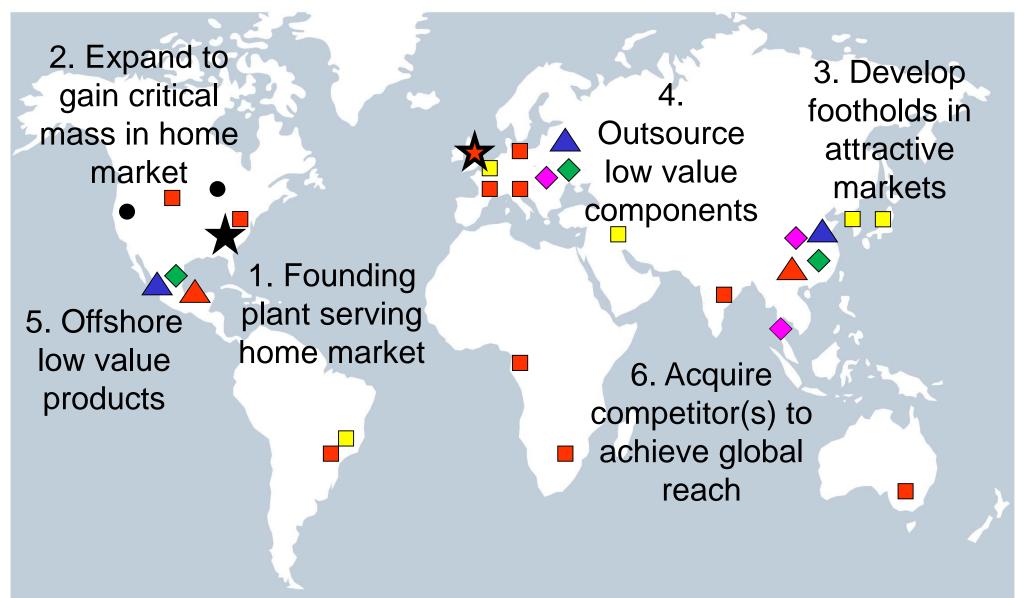
Manufacturing Footprint Strategy

Making the Right Things in the Right Places

IfM Briefing Day Thursday 14 May 2015 **Paul Christodoulou**

Principal Industrial Fellow pac46@cam.ac.uk

Don Fleet Principal Industrial Fellow def25@cam.ac.uk



- 1. Why this is important
- 2. If M toolkit & applications
- 3. Make-or-buy
- 4. Global network design
- 5. Summary & questions

HOW GLOBAL MANUFACTURING NETWORKS DEVELOP

© Copyright Institute for Manufacturing

WHY THIS IS IMPORTANT

•Huge potential benefits

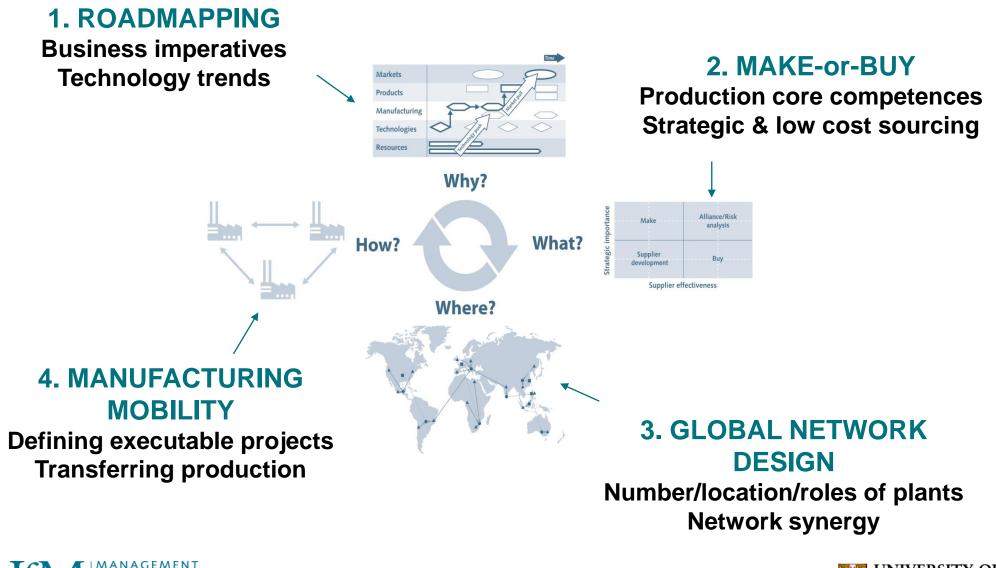
Networks inherited not designed

Difficult & risky

Very high stakes

© Copyright Institute for Manufacturing

1. Why this is important


2. If M toolkit & applications

- 3. Make-or-buy
- 4. Global network design
- 5. Summary & questions

OUTLINE OF IfM APPROACH

0106

SUMMARY OF APPLICATIONS

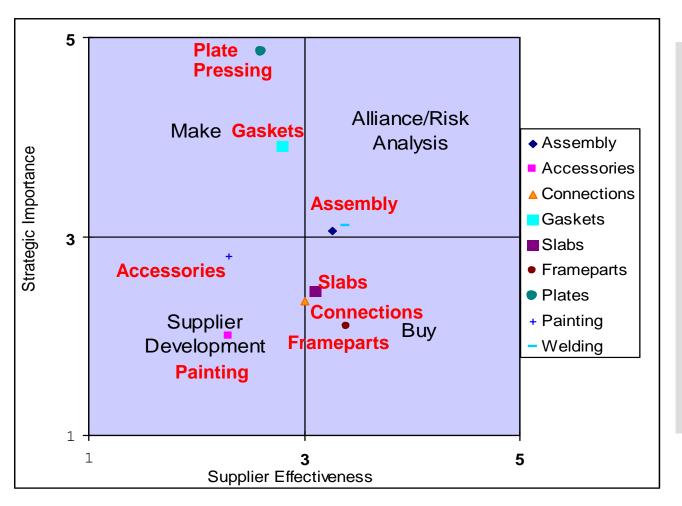
	Large Vehicles	Film Products	Food Equipment	Transport Services	Speciality Chemicals	Hydraulic Pumps	Electrical Devices	FMCG	Plastic Products	Petrochem	Aerospace	Plastic Toys	White Goods	Engineering Plastics	Furniture
	ETT.					Ø						¥.			
Scale	\$40bn, 110 plants	\$4bn, 50 plants	\$1bn, 12 plants	£2bn, 17 plants	\$2bn, 21 plants	\$3bn, 14 plants	\$15bn, 200 plants	\$5bn, 20 plants	\$1.5bn, 45 plants	\$10bn, 60 plants	\$16bn, 40 plants	\$2bn, 12 plants	\$16bn, 45 plants	\$9bn, 31 plants	\$30bn, 45 plants
Outcome	10 year evolutionary strategy	5 year aggressive realign- ment	2 year turnaround plan	5 year strategy	5 year restructure/ pre-merger plan	Staged evolutionary strategy	Footprint design model	Continuous strategy process	5 year re- configuration plan	ldeal future network	Impact of new process technology	Revised vision following turnaround	Definition of global footprint levers	In process	In process
Hard benefits	Significant cost savings	\$50-60m pa declared cost savings	Business survival	20% cost saving	Significant cost savings	Access to growth markets	Significant cost savings	Enablement of global expansion	Significant cost savings	Fundament al shift in network approach	Optimum return on invest- ment	Scalable model for high growth	Significant cost savings	In process	In process
Soft benefits	New processes across 33 SBUs	120 top managers aligned with change	Minimised business disruption	M&A integration framework	Refocusing of core business	Trained trainers for staged roll- out	Post M&A optimisation	I ALLIAGUNGS	Consensus across complex organisation	Distillation of key drivers	Filled key gap in corporate process	Clarity on core compet- ences	Global overlay on local business	In process	In process

15 very different companies

- 1. Why this is important
- 2. IfM toolkit & applications

3. Make-or-buy

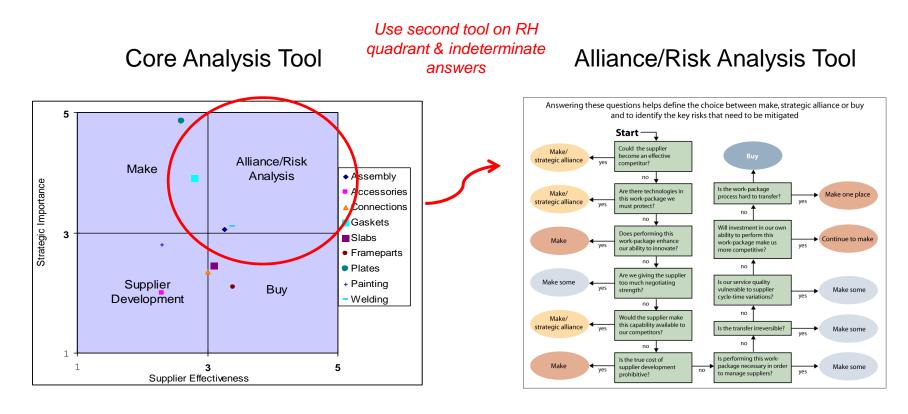
- 4. Global network design
- 5. Summary & questions


MAKE-OR BUY – Key Concepts from the Academic Literature

Comparative Advantage Ricardo 1815	Economic benefits from specialisation between firms							
Global Competitiveness Porter 1986	Companies specialise more as they grow globally							
Core Competences Prahalad & Hamel 1990	Companies specialise more as technologies become more complex							
Lean Manufacturing Womack et al 1990	Lean supports more specialisation via standard interfaces (e.g. Toyota)							
Make-or-Buy Probert et al 1998	Make-or-buy decisions based on strategic importance vs. supplier effectiveness							
Outsourcing Risks Gregory et al 2003	Too much outsourcing impacts competitive capability and creates new competitors							
Innovation in Production Pisano & Shih 2012	Advanced production supports innovation that is difficult to copy							
MANAGEMENT TECHNOLOGY POLICY	More 'Buy' Neutral More 'Make' UNIVERSITY CAMBRIDO							

MAKE-or-BUY: Core Analysis Tool

Plate Heat Exchanger



Conclusions

- 1. <u>Plate pressing</u> is core to competitive differentiation
- 2. <u>Gaskets</u> are a candidate for strategic alliance or acquisition
- 3. Assembly can be licensed
- 4. <u>Slabs, frameparts and</u> <u>connections</u> should be sourced at lowest cost
- 5. <u>Accessories</u> and <u>Painting</u> require supplier development

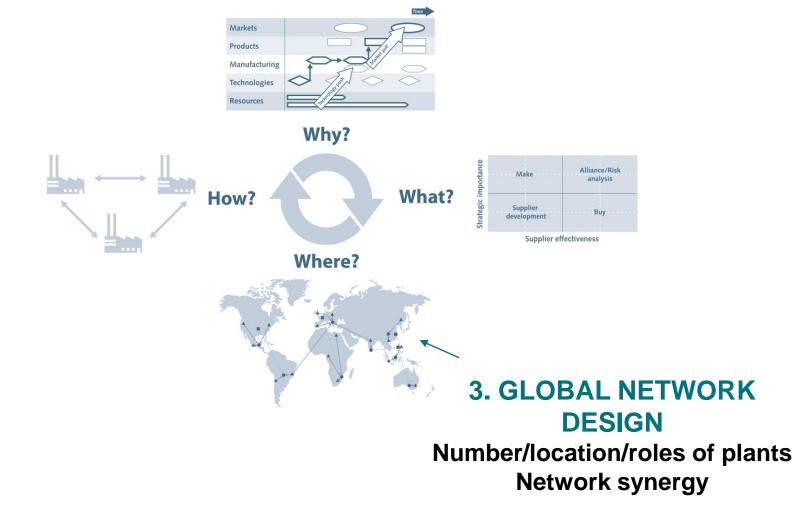
MAKE-OR-BUY TOOLSET – 2 PARTS

Helps define the general positioning of products, components or processes against 4 decision quadrants using best known data & judgment

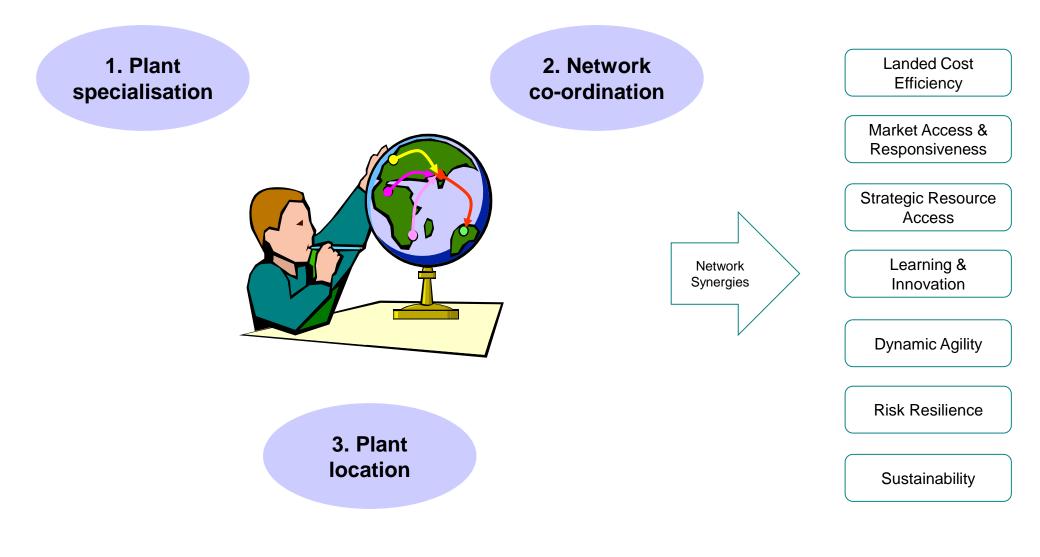
MANAGEMENT

TECHNOLOGY

Helps to clarify more subtle 'strategic alliance' and 'make some' decisions



- 1. Why this is important
- 2. IfM toolkit & applications
- 3. Make-or-buy
- 4. Global network design
- 5. Summary & questions


OUTLINE OF APPROACH

UNIVERSITY OF CAMBRIDGE

GLOBAL NETWORK DESIGN – 3 Key Elements

© Copyright Institute for Manufacturing

14

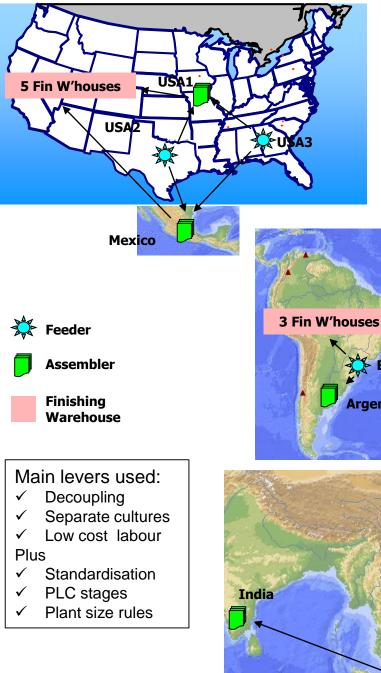
GLOBAL NETWORK DESIGN – Key Concepts from the Academic Literature

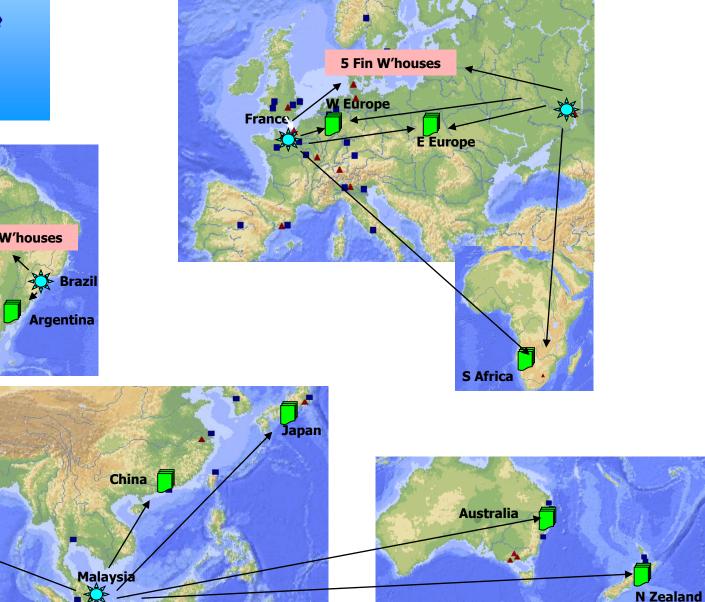
Division of Labour Smith 1776	Economic wealth is based on the SPECIALISATION OF LABOUR
Focus Factories Skinner 1974	Performance can be significantly improved by FOCUSING FACTORIES around different missions
Product vs. Process Hayes & Schmenner 1978	One primary dimension for plant specialisation is PRODUCT vs. PROCESS focus
Flexibility vs. Efficiency Hayes & Wheelwright 1979	Another primary dimension is specialising on FLEXIBILITY vs. EFFICIENCY
Strategic Plant Roles Ferdows 1989 & 1997	Specialising plants based on the STRATEGIC REASON FOR LOCATION (access to low cost, skills or markets)
Network Decoupling <i>Mason-Jones at al 2000</i>	Networks can be DE-COUPLED into efficient, primary processes and responsive, secondary processes
Modular Networks Sturgeon 2002	High performance networks are made up of differentiated plants with STANDARDISED INTERFACES & INTERCONNECTIONS
Product Configuration Srai & Gregory 2007	NETWORK TRANSFORMATION can be enabled by PRODUCT CONFIGURATION (e.g. standardisation, modularisation)
If MANAGEMENT TECHNOLOGY	UNIVERSITY O

FOOTPRINT LEVERS

- A means of creating *networkassociated synergies* (i.e. benefits over-and-above those derived from running an independent set of plants)
- Covers the 3 elements of network design principles: plant specialisation, network coordination and plant location

1	HIGH vs. LOW RUNNER PLANTS					
2	LOAD SHEDDING PLANTS					
3	GLOBAL-REGIONAL-LOCAL PLANTS					
4	PRODUCT LAUNCH PLANTS					
5	CLOSE TO STRATEGIC SUPPLIERS					
6	ACCESS TO SKILLED LABOUR					
7	DIFFERENT PERFORMANCE CULTURES					
8	STANDARD MANUFACTURING PROCESSES					
9	CONTINUOUS FOOTPRINT RECONFIGURATION					
10	DECOUPLING PRIMARY vs. SECONDARY PRODUCTION					
11	ACCESS TO LOW COST LABOUR					
12	PLANT SIZE GUIDELINES					
13	MARKET DEVELOPMENT PLANTS					
14	PRODUCT FOCUS PLANTS					
15	PLANTS WITHIN CAMPUSES					
16	CLOSE TO CUSTOMERS					
17	DYNAMIC LOAD SHIFTING					
18	CURRENCY RISK HEDGING					
19	PLANTS FOR DIFFERENT PRODUCT LIFECYCLE STAGES					
20	NETWORK MANAGEMENT ROLES					
21	MARKET ACCESS PLANTS					
22	STANDARD BUSINESS PROCESSES					
23	MODULARISATION & LATE CUSTOMISATION					
24	HIGHLY AUTOMATED PLANTS					
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23					




WHERE: NETWORK DESIGN Example Before Optimisation

WHERE: NETWORK DESIGN Example After Optimisation

- 1. Why this is important
- 2. If M toolkit & applications
- 3. Make-or-buy

© Copyright Institute for Manufacturing

4. Global network design

5. Summary & questions

IMPACT

TECHNOLOGY

"We worked closely [with IfM ECS] to develop and direct the Global Manufacturing Strategy which will expand our global production capabilities in developing markets around the world, as well as re-aligning our existing production into manufacturing centres of excellence within an optimised network. Our goal is to significantly improve our operating efficiencies, lower our overall cost structure and implement new technologies more effectively, whilst not compromising service, quality or EHS." The company reported a series of updates in press releases over the period 2008 to 2011, where it announced that the overall project involved capital expenditure of \$220m, and delivered repeating savings of \$55m per annum.

VP Global Manufacturing, Sealed Air

"We are one of the world's largest manufacturers, with sales approaching \$50bn, and the main reason for starting this process [with IfM ECS] was to secure the long-term optimisation of our production network. Over time the 'burning platform' has changed but the process remained the same, allowing us to constantly update the vision as conditions evolve. Since 2008 this approach has been used in all business divisions and serves to guide Caterpillar's annual, multi-billion dollar capital spend through coordinated investments across the vertically integrated company."

Manager of Global Production Network Planning, Caterpillar

Electrolux has been conducting a collaborative programme with IfM ECS during 2012 and 2013 aimed at applying IfM's research on optimising global manufacturing networks. The project is still ongoing and the future impact is not yet finalised. However, the outcome is expected to guide investment in the future footprint over the next 3-5 years in the order of 3.5 Bsek (400m euros) where the targeted cost savings are in the order of 1.3 to 1.6 Bsek (180m euros) annually. "This project forms a major part of our corporate business strategy and will help to guide the optimisation of our footprint of over 45 plants around the world. This will drive structural changes in terms of cost reduction and responsiveness to customers which will underpin our future competitive differentiation."

SVP Global Manufacturing Operations, Electrolux

ARE WE ON THE CUSP OF A NEW ERA IN TERMS OF MACRO-LEVEL DRIVERS ?

From:

- Globalisation of markets
- Availability of low cost labour
- Supply chain fragmentation
 - Mergers & acquisitions
 - Information age


To:

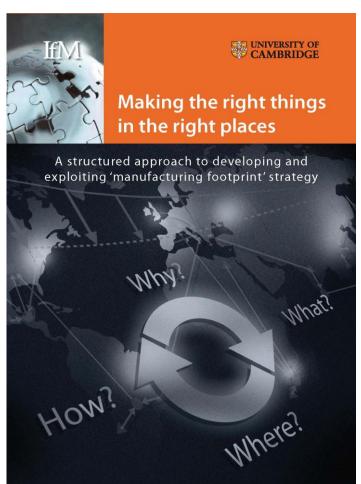
- Power shift west-east
- Sustainability pressures
 - Industry 4.0
- Convergent values & norms
 - Rise of the EMNC*
- New policy perspectives on manufacturing

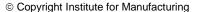
*EMNC = Emerging Multi National Corporation

IN SUMMARY

• Imperatives & roadmaps

- Mfg core competences, purpose of partnerships
- 'Where': plant roles before location
 - Creating synergy from difference


- 'How': making it happen
 - Competences in manufacturing mobility


ANY QUESTIONS

If M report available to download from:

http://www.ifm.eng.cam.ac.uk/resources/international/making-the-right-things-in-the-right-places/

