Well dressed?

The present and future sustainability of clothing and textiles in the United Kingdom.

Technical annex

Julian M Allwood
Søren Ellebæk Laursen
Cecilia Malvido de Rodríguez
Nancy M P Bocken
Institute for Manufacturing
University of Cambridge
November 2006

CONTENTS

1. Introduction 3
2. The United Kingdom textile mass balance 4
Import and export of fibres in 2004 by mass 5
Import and export of yarns in 2004 by mass 6
Import and export of fabrics in 2004 by mass 7
Import and export of intermediate products in 2004 by mass 8
Import and export of products in 2004 by mass 9
Consumption and emissions from the Clothing and Textile industry 10
Footnotes to the section "The United Kingdom C\&T mass balance" 13
3. Scenario analysis 14
Environmental scenario analysis 19
Basic product data for the 3 base-case - at product level and at UK level 21
Material and waste flow in the life cycle of the 3 textile products - Base cases 22
Textile material transportation needed in the life cycle of the 3 textile products

- Base cases 26
Material and waste flow in the life cycle of the 3 textile products - Scenarios 30
Textile material transportation needed in the life cycle of the 3 textile products
- Scenarios 35
Toxicity evaluation 43
Economic and social scenario analysis 45
Economic and social analysis - Base cases 45
Economic and social analysis - Scenarios 56

Introduction

This technical annex presents technical background details for the report "Well dressed? The present and future sustainability of clothing and textiles in the United Kingdom", 2006, ISBN 1-902546-52-0. The first part of the report looks at the flow of material through the UK arising from present day demand for clothing and textiles. The second part of the report explores the possibility that the UK's demand could be met in different ways. Five person-years of work leading to the report were funded by the Landfill Tax Credit scheme, through the Biffaward scheme administered by the Royal Society of Wildlife Trusts and with 10% funding from Marks and Spencer.

This technical annex is intended to be valuable for people who want to learn more about the technical details in preparing the report.

The United Kingdom clothing and textile mass balance

The numbers and the two figures in the "Well dressed?" report on page 18-21 are primarily based on these sources:

- Detailed HM Revenue \& Customs 2004 trade data by value and quantity covering chapters 50 to 63 in the "Combined Nomenclature" classification system. Downloaded from http://www.uktradeinfo.com/
- Detailed UK 2004 production data by value and quantity provided by the British Apparel \& Textile Confederation (BATC) and using the PRODCOM classification system (PRODucts of the European COMmunity).

In addition various other sources were used (see list on page 13).

On the following pages the sums and numbers used for further analysis later in this mass balance section or numbers directly presented in the "Well dressed?" report are high-lined in bold. In addition other especially important details and assumptions are also marked in bold.

Import and export of fibres in 2004 by mass

Detailed HM Revenue \& Customs 2004 trade data in the "Combined Nomenclature" classification system downloaded from www.uktradeinfo.com	$\mathbf{Q u a n t i t y}$	

Import and export of yarns in 2004 by mass

Detailed HM Revenue \& Customs 2004 trade data in the "Combined Nomenclature" classification system downloaded from www.uktradeinfo.com/	Quantity kg	
	Total Imports	Total Exports
5004 :SILK YARN OTHER THAN THAT OF SCHAPPE OR BOURETTE (EXCL. THAT PUT UP FOR RETAIL SALE)	178,435	30,001
5005 :YARN OF SCHAPPE OR BOURETTE (EXCL. THAT PUT UP FOR RETAIL SALE)	73,412	43,420
5006 :YARN OF SILK, SCHAPPE OR BOURETTE, PUT UP FOR RETAIL SALE; SILKWORM GUT	32,376	58,515
5106 :CARDED WOOL YARN (EXCL. THAT PUT UP FOR RETAIL SALE)	9,688,196	6,825,510
5107 :WORSTED YARN OF WOOL (EXCL. THAT PUT UP FOR RETAIL SALE)	6,835,023	1,882,499
5108 :CARDED OR WORSTED YARN OF FINE ANIMAL HAIR (EXCL. THAT OF WOOL OR THAT PUT UP FOR RETAIL SALE)	354,028	1,150,734
5109 :YARN OF WOOL OR FINE ANIMAL HAIR, PUT UP FOR RETAIL SALE	225,922	535,554
5110 :YARN OF COARSE ANIMAL HAIR OR OF HORSEHAIR, INCL. GIMPED HORSEHAIR YARN, WHETHER OR NOT PUT UP FOR RETAIL SALE (EXCL. HORSEHAIR AND YARN NOT JOINED TOGETHER)	7,335	18,119
5204 : COTTON SEWING THREAD, WHETHER OR NOT PUT UP FOR RETAIL SALE	501,298	432,545
5205 :COTTON YARN OTHER THAN SEWING THREAD, CONTAINING >= 85% COTTON BY WEIGHT (EXCL. THAT PUT UP FOR RETAIL SALE)	18,640,255	6,094,403
5206 :COTTON YARN OTHER THAN SEWING THREAD, CONTAINING > 50% TO < 85 \% COTTON BY WEIGHT (EXCL. THAT PUT UP FOR RETAIL SALE)	5,341,998	118,180
5207 :COTTON YARN OTHER THAN SEWING THREAD PUT UP FOR RETAIL SALE	4,956,235	226,141
5306 :FLAX YARN	3,466,985	1,377,701
5307 :YARN OF JUTE OR OF OTHER TEXTILE BAST FIBRES OF HEADING 5303	3,004,985	379,458
5308 :YARN OF OTHER VEGETABLE TEXTILE FIBRES; PAPER YARN (EXCL. FLAX YARN, YARN OF JUTE OR OF OTHER TEXTILE BAST FIBRES OF HEADING 5303 AND WOOL YARN)	368,050	197,064
5401 :SEWING THREAD OF MAN-MADE FILAMENTS, WHETHER OR NOT PUT UP FOR RETAIL SALE	1,802,755	1,829,445
5402 :SYNTHETIC FILAMENT YARN, INCL. SYNTHETIC MONOFILAMENTS OF < 67 DECITEX (EXCL. SEWING THREAD AND YARN PUT UP FOR RETAIL SALE)	146,924,813	27,914,553
5403 : ARTIFICIAL FILAMENT YARN, INCL. ARTIFICIAL MONOFILAMENT OF < 67 DECITEX (EXCL. SEWING THREAD AND YARN PUT UP FOR RETAIL SALE)	4,425,819	487,618
5404 :SYNTHETIC MONOFILAMENT OF >= 67 DECITEX AND WITH A MAXIMUM DIAMETER OF =< 1 MM; STRIP AND THE LIKE, E.G. ARTIFICIAL STRAW, OF SYNTHETIC TEXTILE MATERIAL, WITH AN APPARENT WIDTH OF $=<5 \mathrm{MM}$	7,242,556	9,881,106
5405 :ARTIFICIAL MONOFILAMENT OF >= 67 DECITEX AND WITH A MAXIMUM DIAMETER OF =< 1 MM; STRIP AND THE LIKE, E.G. ARTIFICIAL STRAW, OF SYNTHETIC TEXTILE MATERIAL, WITH AN APPARENT WIDTH OF $=<5 \mathrm{MM}$	16,406	3,026
5406 :MAN-MADE FILAMENT YARN, PUT UP FOR RETAIL SALE	421,160	110,934
5508 :SEWING THREAD OF MAN-MADE STAPLE FIBRES, WHETHER OR NOT PUT UP FOR RETAIL SALE	1,154,266	217,937
5509 :YARN OF SYNTHETIC STAPLE FIBRES (EXCL. SEWING THREAD AND YARN PUT UP FOR RETAIL SALE)	25,492,109	1,519,581
5510 :YARN OF ARTIFICIAL STAPLE FIBRES (EXCL. SEWING THREAD AND YARN PUT UP FOR RETAIL SALE)	9,063,324	333,396
5511 :YARN OF MAN-MADE STAPLE FIBRES, PUT UP FOR RETAIL SALE (EXCL. SEWING THREAD)	1,096,452	616,167
Sum 50-55	251,314,193	62,283,607
50-53 - Natural yarns	53,674,533	19,369,844
54-55 (ex suppressed for 54) : Man-made yarns	197,639,660	42,913,763
54-54 (including suppressed) : Man-made yarns	197,639,660	97,364,014
Total yarns	251,314,193	116,733,858
54:SUPPRESSED FOR - :MAN-MADE FILAMENTS	0	54,450,251
50 - Silk	284,223	131,936
51- Wool 9and other animal hear)	17,110,504	10,412,416
52 Cotton	29,439,786	6,871,269
53 - Oher natural fibres like flax)	6,840,020	1,954,223
54-54 Man-made (from above)	197,639,660	97,364,014
Total yarn	251,314,193	116,733,858

Import and export of fabrics in 2004 by mass

Detailed HM Revenue \& Customs 2004 trade data in the "Combined Nomenclature" classification system downloaded from www.uktradeinfo.com/	Quantity kg	
	Total Imports	Total Exports
5007 :WOVEN FABRICS OF SILK, SCHAPPE OR BOURETTE	943,096	610,907
5111 : WOVEN FABRICS OF CARDED WOOL OR OF CARDED FINE ANIMAL HAIR (EXCL. FABRICS FOR TECHNICAL USE OF HEADING 5911)	68	91
5112 :WOVEN FABRICS OF COMBED WOOL OR OF COMBED FINE ANIMAL HAIR (EXCL. FABRICS FOR TECHNICAL PURPOSES OF HEADING 5911)	1,743,432	3,375,579
5113 :WOVEN FABRICS OF COARSE ANIMAL HAIR OR OF HORSEHAIR (EXCL. FABRICS FOR TECHNICAL USE OF HEADING 5911)	36,970	13,059
5208 :WOVEN FABRICS OF COTTON, CONTAINING $>=85 \%$ COTTON BY WEIGHT AND WEIGHING $=<200 \mathrm{G}$ PER M2	24,584,608	9,571,324
5209 :WOVEN FABRICS OF COTTON, CONTAINING >=85\% COTTON BY WEIGHT AND WEIGHING > 200 G PER M2	15,834,770	4,519,667
5210 :WOVEN FABRICS OF COTTON, CONTAINING 50% TO 85% COTTON BY WEIGHT, MIXED PRINCIPALLY OR SOLELY WITH MAN-MADE FIBRES AND WEIGHING $=<200$ G PER M2	7,798,513	928,307
5211 :WOVEN FABRICS OF COTTON, CONTAINING $>50 \% \mathrm{TO}<85 \%$ COTTON BY WEIGHT, MIXED PRINCIPALLY OR SOLELY WITH MAN-MADE FIBRES AND WEIGHING $>200 \mathrm{G}$ PER M2	9,483,887	1,911,219
5212 :WOVEN FABRICS OF COTTON, CONTAINING > 50% TO $<85 \%$ COTTON BY WEIGHT, OTHER THAN THOSE MIXED PRINCIPALLY OR SOLELY WITH MAN-MADE FIBRES	1,110,804	588,110
5309 :WOVEN FABRICS OF FLAX	3,167,361	3,741,822
5310 :WOVEN FABRICS OF JUTE OR OF OTHER TEXTILE BAST FIBRES OF HEADING 5303	11,511,923	2,570,466
5311 :WOVEN FABRICS OF OTHER VEGETABLE TEXTILE FIBRES; WOVEN FABRICS OF PAPER YARN (EXCL. THOSE OF FLAX, JUTE, OTHER TEXTILE BAST FIBRES OF HEADING 5303 AND WOOL)	112,093	660,661
5407 :WOVEN FABRICS OF SYNTHETIC FILAMENT YARN, INCL. MONOFILAMENT OF >=67 DECITEX AND WITH A MAXIMUM DIAMETER OF $=<1$ MM	79,506,170	43,189,828
5408 :WOVEN FABRICS OF ARTIFICIAL FILAMENT YARN, INCL. MONOFILAMENT OF $>=67$ DECITEX AND A MAXIMUM DIAMETER OF $=<1$ MM	5,262,139	1,656,878
5512 :WOVEN FABRICS CONTAINING >= 85% SYNTHETIC STAPLE FIBRES BY WEIGHT	4,306,006	1,912,380
5513 :WOVEN FABRICS CONTAINING > 50% TO $<85 \%$ SYNTHETIC STAPLE FIBRES BY WEIGHT, MIXED PRINCIPALLY OR SOLELY WITH COTTON AND WEIGHING $=<170$ G PER M2	18,533,729	3,934,073
5514 :WOVEN FABRICS CONTAINING $>50 \%$ TO $<85 \%$ SYNTHETIC STAPLE FIBRES BY WEIGHT, MIXED PRINCIPALLY OR SOLELY WITH COTTON AND WEIGHING > 170 G PER M2	12,062,369	7,117,812
5515 :WOVEN FABRICS CONTAINING > 50% TO $<85 \%$ SYNTHETIC STAPLE FIBRES BY WEIGHT, OTHER THAN THOSE MIXED PRINCIPALLY OR SOLELY WITH COTTON	6,996,549	19,223,248
5516 :WOVEN FABRICS OF ARTIFICIAL STAPLE FIBRES	17,770,730	3,826,4
5801 :WOVEN PILE FABRICS AND CHENILLE FABRICS (EXCL. TERRY TOWELLING AND SIMILAR WOVEN TERRY FABRICS, TUFTED TEXTILE FABRICS	14,615,016	3,046,962
5802 :TERRY TOWELLING AND SIMILAR WOVEN TERRY FABRICS, TUFTED TEXTILE FABRICS (EXCL. NARROW WOVEN FABRICS OF HEADING 5806, CARPETS AND OTHER FLOOR COVERINGS)	557,443	65,23
5803 :GAUZE (EXCL. NARROW WOVEN FABRICS OF HEADING 5806)	141,811	48,640
5804 :TULLE, INCL. BOBBINET, AND OTHER KNOTTED NET FABRICS; LACE IN THE PIECE, IN STRIPS OR AS MOTIFS	722,091	345,586
5805 :HAND-WOVEN TAPESTRIES SUCH AS GOBELIN, FLANDERS, AUBUSSON, BEAUVAIS AND THE LIKE, AND NEEDLE-WORKED TAPESTRIES, E.G. PETIT POINT, CROSS-STITCH, WHETHER OR NOT MADE UP (EXCL. KELEM, SCHUMACKS, KARAMANIE AND THE LIKE, AND TAPES	50,648	41,654
5806 : NARROW WOVEN FABRICS, INCL. NARROW FABRICS CONSISTING OF WARP WITHOUT WEFT, N.E.S.	7,791,521	7,005,885
5807 :LABELS, BADGES AND SIMILAR ARTICLES, OF TEXTILE MATERIALS, IN THE PIECE, IN STRIPS OR CUT TO SHAPE OR SIZE, NOT EMBROIDERED	1,531,663	2,727,519
5808 :BRAID OF TEXTILE MATERIALS, IN THE PIECE; ORNAMENTAL TRIMMINGS AND THE LIKE, OF TEXTILE MATERIALS, IN THE PIECE, NOT EMBROIDERED, OTHER THAN KNITTED OR CROCHETED; TASSELS, POMPONS AND SIMILAR ARTICLES OF TEXTILE MATERIALS	1,133,413	957,567
5809 :WOVEN FABRICS OF METAL THREAD AND WOVEN FABRICS OF METAL OR METALLIZED YARN OF HEADING 5605, OF A KIND USED FOR CLOTHING, INTERIOR DECORATION OR SIMILAR PURPOSES, N.E.S.	33,082	16,8
5810 :EMBROIDERY ON A TEXTILE FABRIC GROUND, IN THE PIECE, IN STRIPS OR AS MOTIFS	3,035,879	517,407
5811 :QUILTED TEXTILE PRODUCTS IN THE PIECE, COMPOSED OF ONE OR MORE LAYERS OF TEXTILE MATERIALS ASSEMBLED WITH PADDING BY STITCHING OR OTHERWISE (EXCL. EMBROIDERY OF HEADING NO 5810 AND OUILTED FABRICS FOR BEDDING AND FURNISHINGS)	1,879,455	159,983
5901 :TEXTILE FABRICS COATED WITH GUM OR AMYLACEOUS SUBSTANCES, OF A KIND USED FOR THE BINDING OF BOOKS, THE MANUFACTURE OF BOXES AND ARTICLES OF CARDBOARD OR FOR SIMILAR PURPOSES; TRACING CLOTH; PREPARED ARTIST'S CANVAS; BUCKRAM A	2,418,908	1,167,687
5902 :TYRE-CORD FABRIC OF HIGH-TENSILE YARN OF NYLON OR OTHER POLYAMIDES, POLYESTERS OR VISCOSE, WHETHER OR NOT DIPPED OR IMPREGNATED WITH RUBBER OR PLASTIC	8,721,136	1,399,860
5903 :TEXTILE FABRICS IMPREGNATED, COATED, COVERED OR LAMINATED WITH PLASTIC (EXCL. TYRE-CORD FABRIC OF HIGH-TENSILE YARN OF NYLON OR OTHER POLYAMIDES, POLYESTERS OR VISCOSE; WALL COVERINGS IMPREGNATED OR COVERED WITH TEXTILE MATER	11,652,201	23,270,365
5904 :LINOLEUM, WHETHER OR NOT CUT TO SHAPE; FLOOR COVERINGS CONSISTING OF A TEXTILE BACKING AND A TOP LAYER OR COVERING,	3,505,367	9,234,391
5905 :WALL COVERINGS OF TEXTILE MATERIALS	128,554	99,886
5906 :RUBBERIZED TEXTILE FABRICS (EXCL. TYRE-CORD FABRIC OF HIGH-TENSILE YARN OF NYLON OR OTHER POLYAMIDES)	11,371,710	5,377,609
5907 :IMPREGNATED, COATED OR COVERED TEXTILE FABRICS; PAINTED CANVAS FOR USE AS THEATRICAL SCENERY, STUDIO BACKCLOTHS AND THE LIKE, N.E.S.	2,824,988	2,270,583
5908 : TEXTILE WICKS, WOVEN, PLAITED OR KNITTED, FOR LAMPS, STOVES, LIGHTERS, CANDLES AND THE LIKE; INCANDESCENT GAS MANTLES AND TUBULAR KNITTED GAS MANTLE FABRICS FOR INCANDESCENT GAS MANTLES, WHETHER OR NOT IMPREGNATED (EXCL. WAX-	93,45	50,571
5909 :TEXTILE HOSEPIPING AND SIMILAR TEXTILE TUBING, WHETHER OR NOT IMPREGNATED OR COATED, OR WITH FITTINGS OR ACCESSORIES OF OTHER MATERIALS	536,8	1,228,9
5910 :CONVEYOR OR TRANSMISSION BELTS OR BELTING, OF TEXTILE MATERIALS, WHETHER OR NOT REINFORCED WITH METAL OR OTHER MATERIALS (EXCL. THOSE WITH A THICKNESS OF < 3 MM AND OF INDETERMINATE LENGTH OR CUT TO LENGTH ONLY, PLUS THOSE IM	667,142	3,948,163
5911 :TEXTILE PRODUCTS AND ARTICLES FOR TECHNICAL USE, AS SPECIFIED IN NOTE 7 TO CHAPTER 59	3,256,105	6,277,416
6001 :PILE FABRICS, INCL. 'LONG PILE' FABRICS AND TERRY FABRICS, KNITTED OR CROCHETED	8,709,737	19,416,710
6002 :KNITTED OR CROCHETED FABRICS (EXCL. PILE FABRICS, INCL. 'LONG PILE', LOOPED PILE FABRICS, LABELS, BADGES AND SIMILAR	2,898,842	2,719,031
ARTICLES, AND KNITTED OR CROCHETED FABRICS, IMPREGNATED, COATED, COVERED OR LAMINATED)		
6003 :KNITTED OR CROCHETED FABRICS OF A WIDTH NOT EXCEEDING 30 CM, OTHER THAN THOSE OF HEADING 6001 OR 6002	1,094,083	374,489
6004 : KNITTED OR CROCHETED FABRICS OF A WIDTH EXCEEDING 30 CM, CONTAINING BY WEIGHT 5\% OR MORE OF ELASTOMERIC YARN OR RUBBER THREAD, OTHER THAN THOSE OF HEADING 6001	3,415,510	2,814,585
6005 :WARP KNIT FABRICS (INCLUDING THOSE MADE ON GALLOON KNITTING MACHINES), OTHER THAN THOSE OF HEADINGS 6001 TO 6004	4,414,657	8,656,381
6006 : OTHER KNITTED OR CROCHETED FABRICS	4,473,717	2,720,710
Total fabrics	324,831,640	218,661,875
Sum 50-53-Raw natural fabrics - specified	78,718,925	31,840,512
Sum 54-55-Man-made fabrics - specified	144,437,692	80,860,678
$\begin{array}{l}\text { Sum } 55 \text { - Man-made fibres adjusted (suppressed data for this chapter estimated to be } 50 \% \text { fibres and } 50 \% \text { fabrics (intermediate products) - } \\ \text { see suppressed raw data below) }\end{array}$	144,437,692	139,073,868
Sum 58-60: Unspecified fabrics	101,675,023	105,960,685
Total fabrics	324,831,640	276,875,065
55:SUPPRESSED FOR - :MAN-MADE STAPLE FIBRES	0	116,426,379
50 - Silk	943,096	610,907
51 - Wool (and other aniaml hair)	4,171,870	6,738,029
52-Cotton	58,812,582	17,518,627
53-Other natural	14,791,377	6,972,949
54-55 Man mande fabrics	144,437,692	139,073,868
Total	223,156,617	170,914,380
including unspecified	324,831,640	276,875,065

Import and export of intermediate products in 2004 by mass

Detailed HM Revenue \& Customs 2004 trade data in the "Combined Nomenclature" classification system downloaded	Quantity kg	
	Total Imports	Total Exports
Total yarn (from previous table)	251,314,193	116,733,858
Total fabrics (from previous table)	324,831,640	276,875,065
5601 :WADDING OF TEXTILE MATERIALS AND ARTICLES THEREOF; TEXTILE FIBRES WITH A LENGTH OF =< 5 MM 'FLOCK', TEXTILE DUST AND MILL NEPS (EXCL. WADDING AND ARTICLES THEREOF IMPREGNATED OR COATED WITH PHARMACEUTICAL SUBSTANCES OR PUT UP	70,720,783	13,507,089
5602 :FELT, WHETHER OR NOT IMPREGNATED, COATED, COVERED OR LAMINATED, N.E.S.	14,087,081	15,040,037
5603 :NONWOVENS, WHETHER OR NOT IMPREGNATED, COATED, COVERED OR LAMINATED, N.E.S. - NB 2005 data has replaced 2004 data because 2004 import data was estimated to be incorrect (much too high)	165,031,525	31,811,910
5604 :TEXTILE-COVERED RUBBER THREAD AND CORD; TEXTILE YARN, STRIP AND THE LIKE OF HEADINGS 5404 AND 5405, IMPREGNATED, COATED, COVERED OR SHEATHED WITH RUBBER OR PLASTIC (EXCL. IMITATION CATGUT, THREAD AND CORD WITH FISHHOOK ATTAC	1,593,801	909,109
5605 :METAL YARN AND METALLIZED YARN, WHETHER OR NOT GIMPED, CONSISTING OF STRIP OR THE LIKE OF HEADINGS 5404 OR 5405, OR OF TEXTILE YARN, COMBINED WITH METAL IN THE FORM OF THREAD, STRIP OR POWDER, OR COVERED WITH METAL (EXCL. YAR	406,936	171,059
5606 :GIMP, GIMPED STRIP AND THE LIKE OF HEADINGS 5404 OR 5405; CHENILLE YARN AND LOOP WALE-YARN (EXCL. METAL YARN AND METALLIZED YARN OF HEADING 5605; GIMPED HORSEHAIR YARN; TEXTILE-COVERED RUBBER THREAD; TWINE, CORD AND OTHER GIM	839,588	18,460
5607 :TWINE, CORDAGE, ROPE AND CABLE, WHETHER OR NOT PLAITED OR BRAIDED, WHETHER OR NOT IMPREGNATED, COATED, COVERED OR SHEATHED WITH RUBBER OR PLASTIC	18,024,609	4,897,412
5608 :KNOTTED NETTING OF TWINE, CORDAGE, ROPE OR CABLE, BY THE PIECE OR METRE; MADE-UP FISHING NETS AND OTHER MADEUP NETS, OF TEXTILE MATERIALS (EXCL. HAIRNETS, NETS FOR SPORTING PURPOSES, INCL. LANDING NETS, BUTTERFLY NETS AND TH	5,257,583	1,177,779
5609 :ARTICLES OF YARN, STRIP OR THE LIKE, OF HEADINGS 5404 AND 5405, OR OF TWINE, CORDAGE, ROPE OR CABLE OF HEADING 5607, N.E.S.	771,213	545,719
Total intermediate products	852,878,952	461,687,497
56- Other intermediate product (than fibres, yarns and fabrics)	276,733,119	68,078,574

Import and export of products in 2004 by mass

evenue \& Customs 2004 trade data in the "Combined Nomenclature" classification	Quantity kg	
	Total Imports	Total Exports
5701 CARPETS OF TEXTLE MATERIALS, IFNO	5,695 678	1.051
5702 CARPETS ANO OTHER TEXTLE FLOOR COVERINGS, WOVEN, NOT TUFTED OR FLOCKED, WHETHER OR NOT MADE UP, INCL KFIEM. SCHUMACKS, KARAMANIF AND SIMII AR HANDWOVEN RUGS	70,522,502	8,187,674
5703 CARPETS ANO OTHER TEXTLE FLOOR COVERINGS, TUFTED NEEDLE PUNCHEO', WHETHER OR NOT MADE UP	02,914,792	29,189710
5704 CARPETS AND OTHER FLOOR COVERANGS, OF FELT, NOT TUFTED OR FLOCLED, WHETHER OR NOT MADE UP	23,453,938	5,130,726
5705 CARPETS AND OTHER TEXTLLE FLOOR COVERINGS, WHETHER OR NOT MADE UP (EXCL WOVEN OR TUF TED NEEDLE PUNCHED)	8,237,043	9200918
6101 :MENS OR BOYS OVERCOATS, CAR-COATS, CAPES, CLOAKS, ANORAKS, INCL SIFJACLETS, MND-CHEATERS, WINDJACKETS AND SIMILAR ARTICLES, KNITTED OR CROCHETED (EXCL SUITS, ENSEMBLES, JACKETS, BLAZERS AND TROUSERS)	4,236,746	520,819
6102 WOMENS OR GIRLS' OVERCOATS, CAR-COATS, CAPES, CLOAKS, ANORAKS, INCL SKIACKETS, WIND-CHEATERS, WNOJACKETS AND SIMLAR ARTICLES, KNITED OR CROCHETED (EXCL SUITS, ENSEMBLES, JACKETS, BLAZERS, DRESSES, SIGRTS, DMDED SK	12,376,287	1.544781
6103 :MENS OR BOYS' SUITS, ENSEMBLES, JACKETS, BLAZERS, TROUSERS, BIB AND BRACE OVERALLS, BREECHES AND SHORTS (EXCL WND-JACKETS AND SIMILAR ARTCLES, SEPARATE WNSTCOATS, TRACK SUITS, SW SUITS AND SWIMWEAR)	14,770,173	1,330,276
6104 :WOMENS OR GIRLS' SUITS, ENSEMBLES, JACKETS, DRESSES, SKJRTS, DMDEO SKJRTS, TROUSERS, BIB AND BRACE OVERALLS, BREECHES AND SHORTS, GNITTED OR CROCHETED (EXCL WND-JACKETS AND SIMLLAR ARTICLES, SUPS, PETICOATS	31,790,825	3,407,608
AND PANTES		
6105 'MENS OR BOYS' SHIRTS, WNITEO OR CROCHETEO (EXCL NIGHTSHIRTS, T.SHIRTS, SNGLETS ANO OTHER VESTS)	22,471,759	2772,427
6106 WOMENS OR GIRLS' BLOUSES. SHIRIS AND SHIRT-8LOUSES, KNITTEO OR CROCHETED (EXCL T.SHIRTS AND VESTS)	12.123×30	5,481.588
6107 :MENS OR BOYS UNDERPANTS, BRIEFS, NIGHTSHIRTS, PYJAMAS, BATHROBES, DRESSING GOWNS AND SIMLAR ARTICLES, KNITTED OR CROCHETED (EXCL VESTS AND SINGLETS)	16,006,383	1,207,461
6108 'WOMENS OR GIRLS' SUPS, PETICOATS, BRIEFS, PANTIES, NIGHTDRESSES, PYJAMAS, NEGUGES, BATHROBES, DRESSNG GOWNS. HOUSECOATS AND SMLAR ARTICLES, GNITED OR CROCHETED (EXCL T-SHIRTS. VESTS, BRASSIERES, GIRDLES. CORSETS AND	35,015,3080	18966711
6109 T-SHIRTS, SINGLETS AND OTHER VESTS, WNITTED OR CROCHETED	137,576,277	21727321
6110 JERSEYS, PULLOVERS, CAROIGANS, WAISTCOATS ANO SIMILAR ARTICLES, KNITTEO OR CROCHETEO (EXCL WADOED WANTCOATS)	131,875,294	18,073,190
6111 BABIES' GARMENTS ANO CLOTHING ACCESSORIES, WNITED OR CROCHETED (EXCL HATS)	22,178,193	2,981,198
6112 :TRACK-SUITS, SK-SUITS ANO SWIMWEAR, FNITTED OR CROCHETEO	8,475,951	1,046,938
6113 :GARMENTS, KNITED OR CROCHETED, RUBBERRIZED OR IMPREGNATED, COATED OR COVERED WTH PLASTICS OR OTHER MATERIALS (EXCL BABIES' GARMENTS ANO CLOTHING ACCESSORIES)	1,062,262	152,203
6114 SPECIAL GARMENTS FOR PROFESSIONAL, SPORTING OR OTHER PURPOSES, N. ES, MNTIED OR CROCHETED	5,480,395	806419
6115 PANTY HOSE, TIGHTS, STOCIINGS, SOCKS ANO OTHER HOSIERY, INCL	36,973,404	3,400,535
CROCHETED (EXCL FOR EABIES)		
6116 GLOVES, MITTENS ANO MITTS, KNITEO OR CROCHETED (EXCL FOR BABIES)	10,145,556	917 , $\times 9$
617 MADE UP CLOTHING ACCESSORIES, KNITED OR CROCHETED, KNITTED OR CROCHETEO PARTS OF GARMENTS OR OF CLOTHING ACCESSORIES NES.	5.496,031	39768880
6201 :MENS OR BOYS' OVERCOATS, CAR.COATS, CAPES, CLOAKS, ANORAKS, INCL SKLACKETS, WND-CHEATERS, WINDJACKETS AND SIMILAR ARTICLES (EXCL KVITTED OR CROCHETED, SUITS, ENSEMBLES, JACKETS, BLAZERS ANO TROUSERS)	19,527362	66,300574
6202 WOMENS OR GIRLS OVERCOATS. CAR-COATS, CAPES, CLOAKS, ANORAKS, INCL SKLJACKETS, WIND-CHEATERS, WINDJACKETS AND SIMILAR ARTICLES (EXCL WIITTED OR CROCHETED, SUITS, ENSEMBLES, JACKETS, BLAZERS AND TROUSERS)	29,889,262	3203.20
6 603 MENS OR BOYS SUIIS, ENSEMELES, JACKETS, BLAZERS, TROUSERS, BIB ANO BRACE OVERALLS, BREECHES ANO SHORTS (EXCL KNITTED OR CROCHETED, WIND-VACKETS AND SMILAR ARTICLES. SEPARATE WAISTCOATS, TRACK SUITS, SK SUITS AND SWMMEAR	92,341.131	8.567.034
6204 :WOMENS OR GIRLS' SUITS, ENSEMBLES, JACKETS, DRESSES, SKRTS, DMDEO SWRTS, TROUSERS, BIB AND BRACE OVERALLS, BREECHES AND SHORTS (EXCL KNITED OR CROCHETED, WNO.JACKETS AND SIMILAR ARTICLES, SUPS, PETTCOATS AND PANTES	175,695,110	17.227 .002
6205 :MENS OR BOYS SHIRTS (EXCL MVITED OR CROCHETED, NIGHTSHIRTS, SINGLETS AND OTHER VESTS)	35,433,436	3805041
6206 :WOMENS OR GIRLS' BLOUSES, SHRTS ANO SHIRT-BLOUSES (EXCL WNITED OR CROCHETED ANO VESTS)	$41,353,766$	4,829,793
6207 MENS OR BOYS SINGLETS ANO OTHER VESTS, UNDERPANTS, BRIEFS, NIGHTSHRTS, PYJAMAS, BATHROBES, DRESSING GOWNS AND SMMLAR ARTCLES (EXCL INNITED OR CROCHETED)	5,444,317	535,141
6206 :WOMENS OR GIRLS' VESTS, SLIPS, PETTICOATS, BRIEFS, PANTIES, NIGHTDRESSES, PYJAMAS, NEGLIGES, BATHROBES, DRESSING GOWNS, HOUSECOATS AND SMLAR ARTICLES (EXCL KNITTED OR CROCHETED, BRASSIERES, GIRDLES, CORSETS AND SIMILAR AR	13,816,808	1,271,260
6209 BABIES' GARMENTS ANO CLOTHING ACCESSORIES OF ALL TYPES OF TEXTLE MATEHIALS (EXCL KNITIEO OR CROCHETED AND HATSI	8.829 .192	856.462
6210 : GARMENTS MADE UP OF FELT OR NONWOVENS, WHETHER OR NOT IMPREGNATED, COATED, COVERED OR LAMINATED; GARMENTS OF TEXTLE FABRICS, RUBEERIZED OR IMPREGNATED, COATED, COVERED OR LAMINATED WITH PLASTICS OR OTHER SUBSTANCES (EXCL KN	12,167,449	4,413,518
6211 TRACK SUITS, SK SUITS, SWIMWEAR ANO OTHER GARMENTS N ES. (EXCL WNITED OR CROCHETE	19,095,495	80
6212 :BRASSIERES, GIRDLES, CORSETS, BRACES, SUSPENDERS, GARTERS AND SIMLAR ARTICLES AND PARTS THEREOF, OF ALL TYPES OF TEXTLE MATERIALS, WHETHER OR NOT ELASTICATED, NCL KNITTED OR CROCHETED (EXCL BELTS AND CORSELETS MADE ENTR	15,190,810	1,300,662
CORSELETS MAOE ENTR	565,374	30.454
6214 :SHAWLS, SCARVES, MUFFLERS, MANTLLAS, VEILS ANO SIMLAR ARTICLES (EXCL WNITED OR CROCHETED)	$6,900,331$	1290.802
6215 :TIES, BOW TIES AND CRAVATS OF TEXTLE MATERAALS (EXCL LNVITTED OR CROCHETED)	1,562,299	390,600
6216 GLOVES, MITENS ANO MITS OF All TYPES OF TEXTLE MATERLAL S (EXCL WMITED OR CROCHETEO ANO FOR EABIES)	2,104,772	217,413
6217 MADE UP CLOTHING ACCESSORIES AND PARTS OF GARMENTS OR CLOTHING ACCESSORIES. OF ALL TYPES OF TEXILE MATERIALS N.E.S. (EXCL KNITTED OR CROCHETED)	4,198,214	11.1894 .575
6301 :BLANKETS AND TRAVELUING RUGS OF ALL TYPES OF TEXTLE MATERIALS (EXCL TABLE COVERS, BEOSPREADS AND ARTICLES OF BEODING AND SIMLAR FURNISHING OF HEADNG 9404)	9,536,325	2,004,866
6502 : BEO-LINEN, TABLE LINEN, TOILET LINEN AND KTTCHEN UNEN OF ALL TYPES OF TEXTLE MATERIALS (EXCL FLOOR-CLOTHS, POLISHING-CLOTHS, DISH-CLOTHS AND DUSTERS	116,073,875	10.57273
6303 CURTANS, INCL DRAPES, AND INTERIOR BUNDS; CURTAIN OR BED VALANCES OF ALL TYPES OF TEXTLE MATERIALS (EXCL AWNINGS ANO SUNBUNDS	36,340,373	2,190,319
6S04 ARTICLES FOR INIERIOR FURNISHING, OF ALL TYPES OF TEXTLE MATERALS (EXCL BLANKEIS AND TRAVELUNG RUGS. BED-UNEN, TABLE LNEN, TILLET LNEN, KTCHEN LNEN, CURTAINS, INCL DRAPES, INTERIOR BUNOS, CURTAIN OR BED VALANCES,	21.901 .53	1.027981
6305 SACKS ANO EAGS , OF A KNO USED FOR THE PACKING OF GOODS, OF AlL TYPES OF TERTLE MATERILLS	30,895,397	2599,133
6306 TARPAULINS, SALS FOR BOATS, SALBOAROS OR LANDCRAFT, AWNINGS, SUNBLINOS, TENTS AND CAMPING GOOOS	39,123,541	1,810,050
6307 MADE UP ARTICLES OF TEXTLLE MATERIALS, IMCL DRESS PATIERNS, NES.	41.879983	7876007
6308 : SETS CONSISTING OF WOVEN FABRIC AND YARN, WHETHER OR NOT WTH ACCESSORIES, FOR MAJING UP INTO RUGS, TAPESTRIES, EMEROIDERED TABLE CLOTHS OR SERMETTES, OR SIMILAR TEXTLE ARTICLES, PUT UP IN PACKINGS FOR RETALL SALE EXCL SE	204,885	108,864
6309 :WORN CLOTHING AND CLOTHING ACCESSORIES, BLANIETS AND TRAVELUNG RUGS, HOUSEHOLO LINEN AND ARTICLES FOR INTERIOR FURNISHING, OF ALL TYPES OF TEXTLLE MATERIALS, INCL. ALL TYPES OF FOOTWEAR AND HEADGEAR, SHOWNG SIGNS OF APPRECI	12,302,845	199245.442
6310 USED OR NEW RAGS, SCRAP TWINE, COROAGE, ROPE ANO CABLES ANO WORN OUT ARTICLES THEREOF, OF TEXTLE MATERLALS	21,105915	12,213,263
Sum products	1,733,277,98	492755,173
$6 \times 109+6310$. Waste impont and expon	33,488,760	211,456,705
$6309+6310$ - Waste import and export (rounded and as estimated / confirmed by Garth Ward, Salvation Army, personal communication, 2006). In addition (Gart Ward). total end of life products collected in UK is estimated to $300,000,000 \mathrm{~kg}$. Of this UK Resycling and reuse is estimated to $100,000,000,60 \%$ for recycling and 40% for reuse.	30,000,000	200,000,000
Sum products excluding waste import and export 6309+6310	1.699.789.228	281.296.468
Clothing alone (61+62)	992,569,353	200,315,616
Carpets alone (57)	410,823.953	52,840,903

Consumption and emissions from the Clothing and Textile industry

Clothing and Textile (C\&T) products

In the table below the 2004 the top 3 UK apparent consumption of C\&T categories by value (million £) are shown.

UK Top 3 consumption of C\&T in 2004 by value

	Apparent consumption	Import	Production	Export
Clothing				
Trousers (woven) etc.	1,880	$\mathbf{1 , 8 9 4}$	$\mathbf{3 0 8}$	$\mathbf{3 2 2}$
T-Shirts etc.	1,248	$\mathbf{1 , 5 1 8}$	66	$\mathbf{3 3 6}$
Pullovers etc.	1,015	$\mathbf{1 , 0 2 1}$	$\mathbf{2 1 4}$	$\mathbf{2 2 0}$
Total top 3 clothing	$\mathbf{4 , 1 4 3}$	4,433	588	878
Total clothing	$\mathbf{1 2 , 0 6 5}$	$\mathbf{1 0 , 8 5 9}$	$\mathbf{3 , 9 2 5}$	$\mathbf{2 , 7 1 9}$
Textiles				
Carpets etc.	1,373	$\mathbf{8 2 4}$	$\mathbf{7 5 4}$	$\mathbf{2 0 5}$
Man-made fibres	545	17	725	197
Bed linen	280	264	45	29
Total top 3 textiles	2,198	1,105	1,524	431
Total textiles	6,955	$\mathbf{4 , 6 5 7}$	$\mathbf{5 , 6 5 7}$	$\mathbf{3 , 3 5 9}$

- Note that the apparent consumption by value is based on industry sales and not retail sales.
- Production data is based directly on British Apparel \& Textile Confederation (BATC) ${ }^{\text {MO }}$. Import and export is based directly on HM Revenue \& Customs 2004 trade data ${ }^{\text {MA }}$. Except for "Bed linen" that is based on BATC only and Export of "Man-made fibres" that has been estimated from (MA) using the same principle for suppressed data as mentioned in the table "Import and export of fibres in 2004 by mass".

Note that fibres can be used to produce intermediate products (yarns and fabrics) and the fibres, yarns and fabrics can be used to produce various C\&T products. For the calculations of the totals for apparent consumption for fibres (and yarns and fabrics) double counting is therefore most likely to occur. For import and export correct totals can be calculated in all cases because the numbers relate to actual physical flow entering or leaving UK.

In the table on the next page the 2004 UK apparent consumption of major C\&T categories by mass (million kg) are shown.

2004 UK apparent consumption of major C\&T categories by mass (million kg)

	Apparent consumption	Import	Production	Export	Notes
Clothing					
Trousers (woven) etc.	163	163	14	15	Import and export estimated based on the average $£ / \mathrm{kg}$ for CN code 6203 and 6204 (11.60 and 21.72 respectively). Production estimated from export data -assumed similar.
T-Shirts etc.	140	160	5	24	Import and export estimated based on the average $£ / \mathrm{kg}$ for CN code 6105 and 6109 (9.48 and 13.71 respectively). Production estimated from export data -assumed similar.
Pullovers etc.	112	112	11	11	Import and export estimated based on $£ / \mathrm{kg}$ for CN code 6110 (9.09 and 19.97 respectively). Production estimated from export data -assumed similar.
Total top 3 clothing	415	436	30	50	
Total clothing	992	993	200	200	Import and export directly from the table "Import and export of products in 2004 by mass". Production estimated from BATC PRODCOM data.
Textiles					
Carpets etc.	532	411	174	53	Import and export directly from the table "Import and export of products in 2004 by mass". Production estimated from BATC PRODCOM data using the production in $\mathbf{m 2}$ (84.5 million $\mathbf{m} 2$) and using the average $\mathrm{kg} / \mathrm{m} 2$ (2.06) for the import and export for the CN chapter 57.
Total textiles	1,150				Balance calculation from the figure on page 20-21 in the "Well dressed?" report. The total consumption is 2,156 thousand tons, clothing is about $\mathbf{1 , 0 0 0}$ thousand tons i.e. the rest about $\mathbf{1 , 1 5 0}$ thousand tons is various textiles.

Fibres, yarns, and fabrics

In the table below details about fibres, yarns, fabrics and other intermediate products by mass are shown.

UK consumption of fibres, yarns, and fabrics in 2004 by mass (thousand tonnes)

Fibres/ Yarns / Fabrics	Apparent Consumption	Import	Production	Export	
Fibres					
Raw natural fibres	145	137^{1}	$70^{2,3,4}$	$62^{1,4}$	
Man-made fibres	312	224^{1}	$242^{2,3,4}$	$154^{1,3,4}$	
Total fibres	458	$\mathbf{3 6 1}$	$\mathbf{3 1 2}$	$\mathbf{2 1 5}$	
Yarns					
Natural yarns	84	54^{1}	$49^{2,3,4}$	$19^{1,4}$	
Man-made yarns	128	198^{1}	$27^{2,3,4}$	$97^{1,3,4}$	
Total yarns	210	$\mathbf{2 5 1}$	76	$\mathbf{1 1 7}$	
Fabrics					
Natural fabrics - specified	65	79^{1}	$18^{2,3,4}$	32^{1}	
Man-made fabrics - specified	58	144^{1}	$53^{2,3,4}$	139^{1}	
Various fabrics unspecified	54	102^{1}	$52^{2,3,4}$	106^{1}	
Total fabrics	177	$\mathbf{3 2 5}$	129	$\mathbf{2 7 7}$	
Total yarns and fabric	387	576	205	394	
Total, fibres, yarns and fabrics	845	937	517	609	

1: HM Revenue \& Customs 2004 trade data $^{\mathrm{MA}}$
2: 2004 BATC data ${ }^{\text {M0 }}$
32004 data (or parts of it) are either not available or statistically "suppressed" for reasons of confidentially.
4 Estimated from various sources.
5 Excluding "Household fabrics" that are considered to be end-products and not intermediate products.

Note that in terms of mass flow a large part of the apparent consumption of fibres and yarns occurs with the industry i.e. the fibres and yarns are use to produce intermediate products (primarily fabrics) or finished C\&T products and will leave the industry as such.

Foreign supply of fibres, yarns and fabrics to the UK textile

In the table below more detailed break-down of the import by mass in table M8-b are shown.

UK supply of fibres, yarns and fabrics in 2004 by mass (thousand tonnes)

Fibres/ Yarns / Fabrics	Import
Fibres	
Silk	0.35
Wool (and other animal hair)	69
Cotton	44
Other natural fibres	23
Man-made fibres	224
Total fibres	361
Yarns	
Silk	0.25
Wool (and other animal hair)	17
Cotton	29
Other natural fibres	7
Man-made fibres	198
Total yarns	251
Specified fabrics	
Silk	1
Wool (and other animal hair)	4
Cotton	59
Other natural fibres	15
Man-made fibres	144
Total specified fabrics	223
Total fibres, yarns and fabrics	835
Total - Silk	1.6
Total - Wool (and other animal hair)	90
Total-Cotton	132
Total Other natural	45
Total Man-made	566

From the table it can be calculated that about two-thirds of the UK import of basic textile materials (fibres, yarns and fabrics) by mass to the industry is man-made, the rest is of natural origin (primarily cotton and wool - about 15% and 10% respectively).

Consumption and emissions from the UK C\&T industry

In the table below estimates of the overall key consumption and emissions numbers for the UK textile industry can be seen.

Consumption and emissions for the UK C\&T Industry

	Clothing and Textile Industry	Percentage of total UK consumption and emission
Primary energy consumption		
Water consumption		
		0.989 million tonnes of oil equivalent
Wastewater $^{\mathbf{3}}$	90 million tonnes	0.4%
CO $_{2}{\text { emissions to } \text { air }^{5}}^{5}$	70 million tonnes	0.5%
Solid Waste $^{\mathbf{5}}$	3.1 million tonnes	Not available
	1.5 million tonnes	0.4%

1: 2004 data ${ }^{\mathrm{MB}}, 2: 1997 / 8$ data ${ }^{\mathrm{MC}}, 3$: Estimated from 1997/8 data ${ }^{\mathrm{MC}}, 4 \mathrm{CO}_{2}$ equivalents ${ }^{\mathrm{MD}}, 5: 2002 / 2003$ data ${ }^{\mathrm{MC}}$

Footnotes to the section "The United Kingdom Clothing and Textile mass balance"

MO
Data sets provided by the British Apparel \& Textile Confederation (BATC), Adam Mansell. Stated to be based on data from Office for National Statistics, HM Revenue \& Customs and BATC estimates.

MA
HM Revenue \& Customs 2004 trade data downloaded from http://www.uktradeinfo.com/
MB
Calculated from DTI, 2006. UK energy sector indicators 2006, page 91. http://www.dti.gov.uk/files/file29726.pdf

MC
ONS, May 2006. Environmental Accounts - spring 2006. Office for National Statistics, page 23, 27, 35 and 39.
http://www.statistics.gov.uk/downloads/theme_environment/EAMay06.pdf\#search=\"Environ mental\%20Accounts\%20\%E2\%80\%93\%20spring\%202006\%22

MD
Calculated using the Gabi-EDIP software process for unspecified primary energy.

Scenario analysis

The scenarios were grouped into four key themes representing the major changes that might occur in the operation of the sector: changes in the structure of the supply chain - the location and means of production; changes in the design of clothing and textiles products and the materials used; changes in the behaviour of consumers; changes in the influence exerted on the sector by government. The scenarios were analysed through use of three representative products: a cotton T-shirt, a viscose blouse and a polyamide carpet. The current production and impacts of these products are described in some detail in the section entitled "Base case". In each scenario the consequences of changing the way that one or more of these products is delivered is explored, and measured according to the "triple bottom line" of sustainability:

Environmental scenario analysis

Environmental impact is predicted through detailed life cycle analyses (LCA), based on the internationally recognized Danish methodology EDIP (Environmental Design of Industrial Products) and with results summarised by three key indicators: climate change (measured in thousand tonnes of CO 2 equivalent); waste volume (in thousand tonnes); an aggregate 'environmental index' representing the combined effect of ozone depletion, acidification (acid rain), nutrient enrichment (algae growth that can cause fish death), and photochemical ozone formation (smog). The aggregated environmental index is measured in "Person Equivalent Targeted" (PET) units i.e. the impacts are normalised to one person share and weighted according to political reduction targets. We could have chosen other LCA methodologies but selected the EDIP methodology because extensive textile related data sets were available using this method in the GaBi-EDIP software package. The GaBi-EDIP software package ${ }^{\text {A }}$ includes an input and output database on various unit processes in the life cycle of textile products and can calculate the environmental impact according to several internationally recognized life cycle assessment methodologies. Most of the textile related data in the software tool was developed during the Danish EDIPTEX project ${ }^{\mathrm{B}}$.

We could also have decided to include detailed life cycle analysis of the use of resources like oil, iron and aluminium etc. or included other indicators like land-use but decided to limit the analysis and presentation of results to only 3 indicators for reasons of simplicity. Climate change and waste were selected as key indicators because they have become common in the public domain in recent years. We also decided to create and use an aggregate 'environmental index' even though it is not directly recommended in the EDIP methodology. Because we are using the "Person Equivalent Targeted" (PET) unit for all the contributions to this indicator this is in principal mathematically correct and enable us to report major environmental changes in a more simple way.

[^0]A widely known problem with LCA is that it is only feasible if boundaries are 'drawn' around the problem being investigated, in order to provide a tractable problem. Such boundaries generally attempt to include all direct inputs to a product but exclude indirect inputs such as capital equipment and infrastructure. Estimates of how much this leads to under-prediction of impacts varies, but can be as high as 50% in some cases. So, the absolute values predicted in the LCA will be only partially accurate, but their relative accuracy - between scenarios where the boundary conditions are constant - should be high.

Economic and social scenario analysis

In this report economic impact is measured by a simplified set of national accounts. For each base case product, a cost model has been developed, showing raw material prices and the build up of production costs and transfer prices to complete the product. Each scenario leads to some variation in production costs, which leads to adjustment of the transfer prices. The final consumer price is held constant - so that an increase in production costs is reflected in reduced retailer margin. The production costs are then converted to national accounts for each participating country, by calculating the total output and intermediate consumption of the businesses operating within each country. From these figures, a Gross National Income is derived for each country and, in addition for the UK, a Balance of Trade and Operating Surplus is calculated- the latter giving a broad indication of profitability of the sector.

Two issues arise in the very simple economic model used to predict macro-economic effects of the scenarios. Firstly, the analysis assumes that activity can be brought in and out of the UK independently of other activity there. In fact, most economists would describe the UK as having "Full employment" - so creation of clothing and textiles jobs in the UK would be possible only by replacing jobs in another sector. If this is the case, the analysis over predicts any positive changes to GNI - as the jobs are substitutes; not new jobs. However, we have assumed that the jobs created would typically be relatively low skilled, and that there is surplus labour in the UK for such tasks. Secondly, may economists would want to include a "multiplier effect" for predictions of GNI: someone who used to be unemployed but is now employed will spend their income, mainly within the country, which will in turn create new jobs and new national income. The difficulty of this type of analysis is to predict which multiplying factor to use. We have chosen here to ignore it.

Social impact is described qualitatively in two areas: the influence of changes on consumers in the UK; the influence of changes on the social conditions of those involved in production. Quantitatively, published figures on working hours and productivity are used to predict the total number of people employed in each country for each scenario.

Environmental, economic and social scenario analysis

On the following pages the overall results presented in the world maps in the "Well dressed?" report are shown with additional details.

Theme 1 Location of clothing and textiles

Global data: (totals T-shirt)	Base case Changing the location of existing operations Changed location with new production technology Changed location with new production technology and local recycling	Climate Change	Waste	Env impact				
		3.26E+06	3.81E+05	$6.67 \mathrm{E}+05$				
		3.19E+06	$3.81 \mathrm{E}+05$	$6.08 \mathrm{E}+05$				
		$3.04 E+06$	$3.69 \mathrm{E}+05$	$5.75 \mathrm{E}+05$				
		$2.97 \mathrm{E}+06$	$3.31 \mathrm{E}+05$	$4.74 \mathrm{E}+05$				
USA data (T-shirt)	Base case Changing the location of existing operations Changed location with new production technology Changed location with new production technology and local recycling	Climate Change	Waste	Env impact	GNI	Employment		
		9.69E+05	1.61E+05	3.13E+05	$2.52 \mathrm{E}+02$	$1.02 \mathrm{E}+04$		
		$9.54 \mathrm{E}+05$	$1.61 \mathrm{E}+05$	3.07E+05	$2.52 \mathrm{E}+02$	$1.02 \mathrm{E}+04$		
		$8.76 \mathrm{E}+05$	$1.48 \mathrm{E}+05$	$2.81 \mathrm{E}+05$	$2.31 \mathrm{E}+02$	$9.33 \mathrm{E}+03$		
		$4.48 \mathrm{E}+05$	$7.55 \mathrm{E}+04$	$1.44 \mathrm{E}+05$	$4.60 \mathrm{E}+01$	$2.36 \mathrm{E}+03$		
UK data (T-shirt)	Base case Changing the location of existing operations Changed location with new production technology Changed location with new production technology and local recycling	Climate Change	Waste	Env impact	GNI	Employment	Balance of trade	Operating surplus
		1.92E+06	2.08E+05	$2.66 \mathrm{E}+05$	$2.32 \mathrm{E}+03$	$2.62 \mathrm{E}+04$	-9.02E+02	$1.89 \mathrm{E}+03$
		2.24E+06	$2.20 \mathrm{E}+05$	3.01E+05	$2.97 \mathrm{E}+03$	1.73E+05	-2.52E+02	$1.11 \mathrm{E}+02$
		$2.17 \mathrm{E}+06$	$2.22 \mathrm{E}+05$	$2.93 \mathrm{E}+05$	$2.99 \mathrm{E}+03$	$2.72 \mathrm{E}+04$	-2.31E+02	$2.54 \mathrm{E}+03$
		$2.52 \mathrm{E}+06$	$2.55 \mathrm{E}+05$	$3.30 \mathrm{E}+05$	3.17E+03	$3.20 \mathrm{E}+04$	$-4.60 \mathrm{E}+01$	$2.65 E+03$
China data (T-shirt)	Base case	Climate Change	Waste	Env impact	GNI	Employment		
		3.74E+05	$1.24 \mathrm{E}+04$	8.82E+04	$6.50 \mathrm{E}+02$	$1.08 \mathrm{E}+05$		
UK data (blouse)	Base case Changing the location of existing operations	Climate Change	Waste	Env impact	GNI	Employment	Balance of trade	Operating surplus
		$1.74 \mathrm{E}+04$	$1.79 \mathrm{E}+03$	$5.26 \mathrm{E}+03$	$6.11 \mathrm{E}+02$	$1.85 \mathrm{E}+03$	-1.04E+02	$5.80 \mathrm{E}+02$
		$1.21 \mathrm{E}+05$	$1.78 \mathrm{E}+04$	$5.55 \mathrm{E}+04$	7.15E+02	$1.58 \mathrm{E}+04$	0.00E+00	$4.55 \mathrm{E}+02$
India data (blouse)	Base case	Climate Change	Waste	Env impact	GNI	Employment		
		1.05E+05	7.15E+03	5.14E+04	$1.04 \mathrm{E}+02$	$1.02 \mathrm{E}+04$		
Global data: (totals blouse)	Base case Changing the location of existing operations	Climate Change	Waste	Env impact				
		1.22E+05	8.94E+03	5.67E+04				
		$1.21 \mathrm{E}+05$	$8.94 \mathrm{E}+03$	$5.55 \mathrm{E}+04$				

Here are some relevant notes clarifying the above table:
Unit for climate change is tonnes CO_{2} equivalents ${ }^{\mathrm{c}}$.
Unit for waste is tonnes.
Unit for environmental impact (environmental impact evaluation) is PET (Person Equivalent Targeted) ${ }^{\mathrm{D}}$.

Unit for GNI (Gross National Income) is million $£$.
Unit for EMP (Employment) is number of workers.
Unit for BOT (Balance Of Trade) is million $£$.
Unit for OS (Operating Surplus) is million $£$.

[^1]
Theme 2 Changes in consumer behaviour

Here are some relevant notes clarifying the above table:

Unit for climate change is tonnes CO_{2} equivalents ${ }^{\mathrm{E}}$.
Unit for waste is tonnes.
Unit for environmental impact (environmental impact evaluation) is PET (Person Equivalent Targeted) ${ }^{\text {F }}$.
Unit for GNI (Gross National Income) is million $£$.
Unit for EMP (Employment) is number of workers.
Unit for BOT (Balance Of Trade) is million $£$.
Unit for OS (Operating Surplus) is million $£$.

[^2]
Theme 3 New products and material selection

Here are some relevant notes clarifying the above table:

Unit for climate change is tonnes CO_{2} equivalents ${ }^{\mathrm{G}}$.
Unit for waste is tonnes.
Unit for environmental impact (environmental impact evaluation) is PET (Person Equivalent Targeted) ${ }^{\mathrm{H}}$.
Unit for Toxicity (Toxicity evaluation) is PET (Person equivalent targeted) ${ }^{1}$
Unit for GNI (Gross National Income) is million $£$.
Unit for EMP (Employment) is number of workers.
Unit for BOT (Balance Of Trade) is million $£$.
Unit for OS (Operating Surplus) is million $£$.

[^3]
Environmental scenario analysis

Some major methodology issues are discussed below:

- One major methodology issue was the selection of a suitable process for electricity generation. As we didn't want the results of the scenario analysis to be influenced by differences in electricity generation in different countries (in principal we could have selected other producing countries) we wanted to select one process and use the process for all calculations. In the GaBi-EDIP data-base 03/2006 version no electricity generation data was available for the UK. The most generic process is "Electricity, EU 1990. Aggregated EDIP". However this process is based on very old data (1990) i.e. less efficient technology and relies heavily on nuclear power (about 50\%). In stead we selected the process "DK: Power grid mix by consumption, 2001 EDIP" which is based on the most recent data. This process relies heavily on coal which has been the trend worldwide in recent years (around 40%), 20% natural gas, 15% crude oil, 7% nuclear and 17% on renewable energy. The amount of renewable energy is unusually high for most other countries, but as we only report and analyse the sum of waste (and not radioactive waste alone) and as renewable in general and nuclear technology both have very low climate change impacts this is in our framework not far from the present situation in the UK - about 40% coal, 30% gas, 20% nuclear and about 5% renewable (DTI, June 2006, Energy trends http://www.dti.gov.uk/files/file30881.pdf).
- Another important decision has been the selection of the base-case products. We wanted to select a limited number of products but also wanted to work with a representative pool. The knitted cotton T-shirt represents standard products (like socks, briefs, etc.) and cotton is by far the most important natural fibre. The woven viscose blouse is a typical fashion garment and viscose is one of the most important man-made regenerated fibres. The carpet with a polyamide pile represents textiles. Carpets are by far the most important type of textiles and polyamide represents the synthetic fibres.
- As shown in the scenario analysis the life time of the products are very important for the environmental performance of the base case products. The 25 times washing and drying of the T-shirt, the 25 times washing of the blouse and the 10 year lifetime of the carpet are all assessed to be realistic. However 50% longer life time - especially for the T-shirt and carpet base cases would not have been unrealistic either. If we have selected these life times it wouldn't have changed the conclusions of the scenario analysis. The energy consumption in the use phase for the T-shirt would just have been more dominating. For the carpet the material phase would still by far have been the most important too. However to illustrate how important the life time issue can be several stakeholders have pointed out that a carpet with a polyamide theoretically can last longer than a wool carpet (the "New products and material selection" theme). In the scenario analysis we have assumed that the two carpets have the same life time (10 years which is the often the warranty for carpets). If we had run the scenario analysis at a theoretically life time level in stead it is not unlikely that the results would have indicated that the polyamide carpet would show the best environmental performance.
- Finally incineration with energy recovery was selected for the final waste disposal for the cotton T-shirt and the viscose blouse. Both products can be considered climate change neutral when incinerated. For the carpet landfill was selected.

According to the GaBi-EDIP license agreement "Users may not publish individual data sets. Only aggregated or calculated results produced using GaBi data may be published ${ }^{\mathrm{J}}$ "

The numbers and calculations presented on the following pages were needed prior to the modelling of the base case products and scenarios in the Gabi-EDIP software tool.

[^4]
Basic product data for the 3 base-case - at product level and at UK level

Material and waste flow in the life cycle of the 3 textile products base cases

The data presented in this section is based on the following primary sources:

- Laursen, S.E., Hansen J., Knudsen, H.H., Wenzel, H., Larsen, H.F. and Kristensen, F.M., 2006. "EDIPTEX -Environmental assessment of textiles." Working Report no 3, 2006. Danish Environmental Protection Agency (in Danish). Is currently being translated to English by DEPA.
- BTTG, 1999. "Textile Processing Techniques". British Textile Technology Group (BTTG). Report no. 3, September 1999.
- Potting and Blok, 1995. "Life-cycle assessment of four types of floor covering".

The numbers have been entered into:

- GaBi-EDIP software package, Version 4.2. 03/2006. For more information about the GaBiEDIP software database and tool visit the Danish LCA-center web-site: http://www.dkteknik.dk/cms/site.asp?p=2456

T-shirt - Base case

		T-shirt of 100\% cotton, dyed				
		Details	Numbers pr T-shirt	Unit	UK demand	
					Amount	Unit/Notes
Product		Weight total 250 g (cotton), $200 \mathrm{~g} / \mathrm{m} 2$	250	g	460,000,000	Pieces
Disposal		Product 250 g to incineration	250	9	460,000,000	Pieces
Use		Life time 25 times 60 C washing with prewash $(6.25 \mathrm{~kg})$, drying (6.25 kg) 25	6.25	kg	11,500,000,000	Pieces washed /dried
		25 times Ironing (1.25 hours)	1.25	h	11,500,000,000	Pieces ironed
End Product - packaging		10 g (polyethylene-PE)	10	g	4,600,000	kg PE
Total manufacturing textile waste	Sum of product, fabric and yarn manufacturing waste				35,880,000	$\begin{aligned} & \text { kg dyed or greige } \\ & \text { cotton fabric or } \\ & \text { yarn or fibre } \end{aligned}$
Total product - manufacturing textile waste	Sum of product manufacturing waste				11,500,000	kg dyed or greige cotton fabric
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste)			115,000,000	kg T-shirt
Product - manufacturing	Product (Making up) needed	gT -shirt needed	250	${ }^{9}$	115,000,000	kg T-shirt
	Making up - waste (Laying up, cutting and sewing)	6% (of input) waste, i.e. 266 g (250/0.94) cotton fabric needed pr T-shirt, i.e. 16 g fabric waste	16	${ }^{9}$	7,360,000	$\begin{aligned} & \begin{array}{l} \mathrm{kg} \text { dyed and } \\ \text { finished cotton } \\ \text { fabric } \end{array} \end{aligned}$
	Finishing needed	From "Making up" i.e. 266 g finished fabric	266	${ }^{9}$	122,360,000	$\begin{aligned} & \begin{array}{l} \mathrm{kg} \text { dyed and } \\ \text { finished cotton } \\ \text { fabric } \end{array} \end{aligned}$
	Finishing needed - m2	With a weight of $200 \mathrm{~g} / \mathrm{m} 2$ i.e. $266 / 200=$ 1.33 m 2	1.33	m2	611,800	$\begin{gathered} \mathrm{m} 2 \text { dyed and } \\ \text { finished cotton } \\ \text { fabric } \\ \hline \end{gathered}$
	Finishing waste 1 (Fabric inspec. + roll up on cardboard)	1.5% (of input) waste, i.e. $270 \mathrm{~g}(266 / 0.985)$ cotton fabric needed pr T-shirt (with a weight of $200 \mathrm{~g} / \mathrm{m} 2$ this is equivalent to 1.35 m 2 (270/200)), i.e. 4 g fabric waste	4	${ }^{9}$	1,840,000	$\begin{aligned} & \hline \mathrm{kg} \text { dyed and } \\ & \text { finished cotton } \\ & \text { fabric } \end{aligned}$
	Finishing waste 2 (Drying, final fixation \& setting m 2 weight)	1\% (of input) waste, i.e. $273 \mathrm{~g} \mathrm{(270/0.99)} \mathrm{cotton}$ fabric needed pr T-shirt, i.e. 3 g fabric waste	${ }^{3}$	${ }^{9}$	1,380,000	$\begin{gathered} \hline \mathrm{kg} \text { dyed and } \\ \text { finished cotton } \end{gathered}$ fabric
	Finishing - Softening needed	From "finishing waste 2" i.e. 273 g (272.7) dyed and softened fabric needed	273	${ }^{9}$	125,580,000	$\begin{gathered} \hline \begin{array}{c} \mathrm{kg} \text { dyed and } \\ \text { softened cotton } \\ \text { fabric } \end{array} \\ \hline \end{gathered}$
	Finishing - Softening waste	Negligible	0	${ }^{\text {g }}$	0	$\begin{aligned} & \hline \mathrm{kg} \text { dyed and } \\ & \text { softened cotton } \\ & \text { fabric } \end{aligned}$
	Dyeing needed	From "Softening" i.e. 273 g (272.7) dyed fabric needed	273	${ }^{9}$	125,580,000	$\begin{gathered} \text { kg dyed cotton } \\ \text { fabric } \end{gathered}$
	Dyeing waste	Negligible	0	${ }^{9}$	${ }^{0}$	$\begin{gathered} \text { kg dyed cotton } \\ \text { fabric } \end{gathered}$
	Pretreatment - Bleaching + washing needed	From "Dyeing" i.e. 273 g bleached and washed fabric	273	${ }^{9}$	125,580,000	kg bleached and washed cotton fabric
	Pre-treatment Bleaching + washing waste	1% (of input) waste, i.e. $275 \mathrm{~g}(273 / 0.99)$ cotton fabric needed pr T-shirt, i.e. 2 g fabric waste	2	${ }^{9}$	920,000	kg bleached and washed cotton fabric
	Greige knitted fabric kg - needed	From "Bleaching" i.e. 275 g fabric	275	${ }^{9}$	126,500,000	$\begin{aligned} & \hline \mathrm{kg} \text { greige knitted } \\ & \text { cotton fabric } \\ & \hline \end{aligned}$
	Greige knitted fabric m2 -needed	200g/m2 i.e. 1.4 m 2 fabric needed (275/200)	1.4	m2	644,000,000	kg greige knitted cotton fabric
Fabric - manufacturing (knitting)	Fabric manufacturing (knitting) waste	1.5% (of input) waste (knitting) i.e. 279 g (275/0.985) yarn needed, i.e. 4 g yarn waste	${ }^{4}$	${ }^{9}$	1,840,000	kg cotton yarn
Yarn manufacturing (spinning)	Yarn - needed	From aboove i.e. 279 g yarn	279	g	128,340,000	kg cotton yarn
	Yarn - manufacturing waste	15% (of input) waste (spinning) i.e. 328 g (279/0.85) fibre needed i.e. 49 g fibre waste	49	9	22,540,000	kg raw cotton fibre
Raw fibre (and other materials)- needed		From "yarn manu" i.e. $\mathbf{3 2 8 \mathrm { g } \text { f fibre needed }}$	328	9	150,880,000	kg raw cotton fibre

Blouse- Base case

		Blouse of 100	viscose,	,	yed	
		Details	Numbers pr	Unit	UK	mand
			Blouse		Amount	Unit/Notes
Product		Weight 200g ($150 \mathrm{~g} / \mathrm{m} 2$ viscose)	200	6	32,500,000	Pieces
Disposal		Product 200 g to incineration	200	g	32,500,000	Pieces
Use		25 times 40 C, Normal without prewash (5 kg) + hang / lie / drip drying	5	kg	812,500,000	Pieces washed
End Product - packaging		10 g (polyethylene-PE)	10	g	325,000	kg PE
Total manufacturing waste	Sum of product, fabric and yarn manufacturing waste	In this case equal to product manufacturing waste because no yarn manufacturing waste			965,250	kg dyed or greige viscose fabric or yarn
Total Product - manufacturing waste	Sum of product manufacturing waste				965,250	kg dyed or greige viscose fabric
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste)			6,509,750	kg Blouse
Product - manufacturing	Product (Making up) needed	g Blouse needed	200	g	6,500,000	kg Blouse
	Making up - waste (Laying up, cutting and sewing)	10% (of input) waste i.e. 200 g (200/0.90) fabric needed, i.e.. 222 g viscose, i.e. $\mathbf{2 2} \mathrm{g}$ fabric waste	22	g	715,000	kg dyed and finished viscose fabric
	Finishing needed	From "Making up" i.e. 222 g finished fabric	222	g	7,215,000	kg dyed and finished viscose fabric
	Finishing needed m2	With a weight of $150 \mathrm{~g} / \mathrm{m} 2$ i.e. $222 / 150=$ 1.48 m 2	1.48	m2	48,100,000	m2 dyed and finished viscose fabric
	Finishing waste 1 (Fabric inspec. + roll up on cardboard)	1.5% (of input) waste, i.e. 225.4 g (222/0.985) viscose fabric needed pr blouse (with a weight of $150 \mathrm{~g} / \mathrm{m} 2$ this is equivalent to 1.50 m 2 (225.4/150), i.e. 4 g fabric waste	3.4	g	110,500	kg dyed and finished viscose fabric
	Finishing waste 2 (Drying, final fixation \& setting m2 weight)	1% (of input) waste, i.e. 227.7 g (225.4/0.99) viscose fabric needed pr Blouse, i.e. 2.3 g fabric waste	2.3	g	74,750	kg dyed and finished viscose fabric
	Finishing -Softening needed	From "finishing waste 2" i.e. $\mathbf{2 2 8} \mathbf{g}$ (227.7) dyed and softened fabric needed	228	g	7,410,000	$\begin{aligned} & \hline \mathrm{kg} \text { dyed and } \\ & \text { softened viscose } \\ & \text { fabric } \end{aligned}$
	Finishing - Softening waste	Negligible	0	9	0	$\begin{gathered} \hline \mathrm{kg} \text { dyed and } \\ \text { softened viscose } \\ \text { fabric } \\ \hline \end{gathered}$
	Dyeing needed	From "finishing waste 2" i.e. 228 g (272.7) dyed fabric needed	228	g	7,410,000	kg dyed viscose fabric
	Dyeing waste	Negligible	0	g	0	kg dyed viscose fabric
	Pre-treatmentDesizing needed	From "Dyeing" i.e. 228 g desized fabric	228	g	7,410,000	kg desized viscose fabric
	Pre-treatment Desizing waste	1% (of input) waste, i.e. 230 g (228/0.99) cotton fabric needed pr T-shirt, i.e. 2 g fabric waste	2	g	65,000	kg desized viscose fabric
	Greige woven fabric kg - needed	$150 \mathrm{~g} / \mathrm{m} 2$ i.e. 1.53 m 2 fabric needed (230/150)	1.53	m2	49,725,000	kg greige woven viscose fabric
	Greige woven fabric m2 -needed	From "Fabric - m2" i.e. 230 g fabric	230	g	7,475,000	kg greige woven viscose fabric
Fabric - manufacturing (weaving)	Fabric manufacturing waste	No waste. i.e. 230 g or 1.53 m 2 needed	0	g	0	kg viscose filament yarn
Yarn + fibre manufacturing (directly from viscose company)	Yarn - needed	No waste as filament yarn comes directly from the viscose factory i.e. no separate spinning i.e. 230 g yarn needed, i.e. 0 g yarn waste	230	g	7,475,000	kg viscose filament yarn
	Yarn - manufacturing waste	No waste	0	g	0	kg viscose filament yarn

Carpet- Base case

		Carpet (tufted) of polyamide (PA) and polypropylene (PP) (per 1m2)				
		Details	$\begin{gathered} \text { Numbers pr } \\ \text { carpet } \end{gathered}$	Unit	UK demand	
					Amount	Unit/Notes
Product		Weight total 2633g, pile (polyamide) 1100, primary backing (woven polypropylene) 133, secondary backing - Latex- 1400 (440 g styrene butadiene (SB) rubber and 1000 g limestone)	2633	${ }^{\text {g }}$	22,500	tons carpet
Disposal	Disposal - Total	Product 2633 g to Landfill	2633	g	8,545,385	m2 carpet
	Disposal - PA		1100	g	9,399,924	kg carpet
	Disposal - PP		133	9	1,136,536	kg carpet
	Disposal (Latex)		1400	g	11,963,540	kg carpet
Use		According to Frees, 2003 "Environmental asessment of wacuum cleaners", Working report no. 27 Dansih Envrionmental Protrection agency (in Danish). According to this a family spends 50 h a year cleaning 100 m 2 i.e. 0.5 hours per year pr m 2 . Over the life time of 10 years i.e. 5 hours per m2	5	h	42,726,927	hous of carpet waccum cleaning
End Product - packaging		No data available - assumed zero	0	g	0	kg PE packaging
Total manufacturing waste	Sum of product, fabric and yarn manufacturing waste	In this case equal to product manufacturing waste because no yarn manufacturing waste			5,063,995	kg dyed / finished / greige fabric or yarn
Total Product - manufacturing waste	Sum of product manufacturing waste	in kg			5,063,995	$\begin{aligned} & \mathrm{kg} \text { dyed and } \\ & \text { finished carpet } \end{aligned}$ fabric
		in m2			1,709,077	$\begin{aligned} & \mathrm{m} 2 \text { dyed and } \\ & \text { finished carpet } \end{aligned}$ fabric
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste)			22,500,000	kg Carpet
	Product (Making up) needed	g carpet needed	2633	${ }^{\text {g }}$	22,500,000	kg Carpet
	Product (Making up) needed	m2 carpet needed	1	m2	8,545,385	$\begin{aligned} & \hline \mathrm{m} 2 \text { dyed and } \\ & \text { finished carpet } \\ & \text { fabric } \end{aligned}$
Product - manufacturing ("rolling, up, cutting and packing","Application of finishing and backside", "Shearing", "Dyeing and drying of grey fabric","Tufting of grey fabric" and "Polypropylene backing, grey fabric")	$\begin{aligned} & \text { Making up - waste } \\ & \text { (Rolling up, cutting } \\ & \text { and packing) } \end{aligned}$	0.2 m 2 waste per 1 m 2 carpet (17%) i.e.. of PA,PP and Latexfoam				
		Waste-Total-m2	0.2	m2	1,709,077	m2 dyed and finished carpet fabric waste
		Waste-Total-kg	526.6	9	4,500,000	kg dyed and finished carpet fabric waste
		Waste-PA	220	${ }^{\text {g }}$	1,879,985	kg dyed and finished PA fabric waste
		Waste-PP	26.6	${ }^{\text {g }}$	227,307	$\begin{array}{c\|} \hline \mathrm{kg} \text { dyed and } \\ \text { finished PP fabric } \\ \text { waste } \\ \hline \end{array}$
		Waste-Latex (approx 70\% limestone)	280	${ }^{9}$	2,392,708	kg Latex fabric waste
	Finishing (application of finishing and backside) needed	Application of Scotchgard and backside, 1,2 m2 needed	1.2	m2	10,254,463	$\begin{aligned} & \mathrm{m} 2 \text { dyed and } \\ & \text { finished carpet } \end{aligned}$ fabric
	Finishing waste	Negligible	0	9	0	$\begin{gathered} \mathrm{m} 2 \text { dyed and } \\ \text { finished carpet } \\ \text { fabric } \\ \hline \end{gathered}$
	"Shearing" needed		1.2	m2	10,254,463	m 2 dyed carpet fabric
	"Shearing" waste	Assumed to be about 5% of finished carpet, but only face fibre "Top shearing" i.e. PA waste $\left(1.2^{*} 1.1\right)^{*} 0.05=66 \mathrm{~g}$ per m 2 carpet product	66	9	563,995	kg dyed PA yarn waste
	Dyeing and drying of grey fabric needed	1.2 m 2	1.2	m2	10,254,463	m2 dyed carpet fabric
	Dyeing and drying of grey fabric waste	Negligible	0	g	0	$\begin{aligned} & \mathrm{m} 2 \text { dyed carpet } \\ & \text { fabric } \end{aligned}$
	Tufting of grey fabric needed	1.2 m 2	1.2	m2	10,254,463	m2 tufted carpet fabric
	Tufting of grey fabric waste	Negligible	0	${ }^{\text {g }}$	0	m 2 tufted carpet fabric
Fabric - manufacturing (PP backing)	Polypropylene backing, grey fabric needed	1.2 m 2	1.2	m2	10,254,463	m2 PP backing carpet fabric
	Polypropylene backing, grey fabric waste	Negligible	0	9	0	m2 PP backing carpet fabric
Yarn + fibre + other materials manufacturing (yarn directly from PA and PP company)	Yarn - needed	No waste as filament yarn comes directly from the PP and PA factory i.e. no separate spinning i.e., i.e. 0 g yarn and fibre waste	1545.6	g	13,207,748	kg yarn
		PA-yarn needed (end product mass+waste sources)	1386	9	11,843,904	kg PA yam
		PP-Yarn needed (end product mass+waste sources)	159.6	g	1,363,844	kg PP yam
	Other material	SB rubber -g (end product mass+waste sources)	484	${ }^{9}$	4,135,967	kg SB-rubber
		$\begin{array}{l}\text { Ground limestone -g (end product mass+waste } \\ \text { sources) }\end{array}$	1196	9	10,220,281	kg limestone

Textile material transportation needed in the life cycle of the 3 textile products - base cases

The world distance data presented in this section is based on the following primary sources:

- SEA distances http://www.distances.com/index.php
- LAND distances http://www.distances.com/distance_drive.php (US) and http://www.indo.com/distance/

The numbers have been entered into:

- GaBi-EDIP software package, Version 4.2. 03/2006. For more information about the GaBi-EDIP software database and tool visit the Danish LCA-center web-site: http://www.dk-teknik.dk/cms/site.asp?p=2456

As it can been seen on the following pages the environmental impact of boat transportation between countries have been allocated to the country that benefits economically from the trade i.e. the country that are selling the products. E.g. transportation by boat of T-shirts manufactured in China to United Kingdom has been allocated to China. Transportation within a country has been allocated to the country where the transportation occurs.

T-shirt - Base case

T-shirt of 100% cotton, dyed $\mathbf{- 1 1 5 , 0 0 0}$ tons or 460 million pieces needed to meet UK demand

Blouse - Base case

Blouse of $\mathbf{1 0 0 \%}$ Viscose, dyed - 6,500 tons or 32.5 million pieces needed to meet UK demand

Carpet - Base case

Carpet of polyamide and polypropylene ($1 \mathrm{~m}^{2}$) - 22,500 tons or $8,545,385 \mathrm{~m}^{2}$ needed to meet UK demand

Material and waste flow in the life cycle of the 3 textile products scenarios

For the following scenarios there is no change in basic textile material and waste flows:

- Theme "Location of clothing and textiles production", scenario 1 "Changing the location of existing operations".
- Theme "Changes in consumer behaviour", scenario 2 "Best practice in clothes cleaning"
- Theme "New products and material selection", scenario 2 "Green manufacturing" - "Organic cotton in stead of conventional for the T-shirt" and scenario 3 "Smart functions""Nanotechnology - stain resistant coating of T-shirt".

For theme "New products and material selection", scenario 3 "Smart functions" "Nanotechnology - Extend life time of carpet" the basic flow will be reduced by 50% of the carpet base-case.

On the following pages in this section the basic flow for other scenarios are presented. The primary sources are the same as mentioned in the corresponding section for the base cases.

T-shirt - Theme "Location of clothing and textiles production"

Scenario 2 "Changed location with new production technology"

		T-shirt of 100\% cotton, dyed				
		Details	Numbers pr T-shirt	Unit	UK demand	
					Amount	Unit/Notes
Product		Weight total $\mathbf{2 5 0 \mathrm { g }}$ (cotton), $200 \mathrm{~g} / \mathrm{m} 2$	250	g	460,000,000	Pieces
Disposal		Product 250 g to incineration	250	g	460,000,000	Pieces
Use		Life time 25 times 60 C washing with prewash $(6.25 \mathrm{~kg})$, drying (6.25 kg)	6.25	kg	11,500,000,000	Pieces washed /dried
		25 times Ironing (1.25 hours)	1.25	h	11,500,000,000	Pieces ironed
End Product - packaging		10 g (polyethylene-PE)	10	g	4,600,000	kg PE
Total manufacturing waste	Sum of product, fabric and yarn manufacturing waste				23,460,000	kg dyed or greige cotton yarn or fibre
Total Product - manufacturing waste	Sum of product manufacturing waste				2,760,000	kg dyed or greige cotton fabric
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste)			115,000,000	kg T-shirt
Product - manufacturing	Product (Making up) needed	g T-shirt needed	250	g	115,000,000	kg T-shirt
	3-D-Making up (i.e. 3D knitting) - waste	Assumed minimal waste 1% (of input) waste, i.e. $253 \mathrm{~g}(250 / 0.99)$ cotton yarn needed pr Tshirt, i.e. 3 g yarn waste.	3	g	1,380,000	kg dyed and finished cotton yarn
	Finishing needed	No finishing needed (softening was used for making up before)	0	g	0	kg dyed and finished cotton yarn
	Finishing waste 1 (Fabric inspec. + roll up on cardboard)	No finishing - No waste	0	g	0	Not relevant
	Finishing waste 2 (Drying, final fixation \& setting m2 weight)	No finishing - no waste	0	g	0	Not relevant
	Finishing - Softening needed	No finishing - no waste	0	g	0	Not relevant
	Dyeing needed	From "Making up" i.e. 253 g dyed yarn	253	g	116,380,000	$\begin{gathered} \hline \mathrm{kg} \text { dyed cotton } \\ \text { yarn } \\ \hline \end{gathered}$
	Dyeing waste	Negligible	0	g		kg dyed cotton yarn
	Pretreatment Bleaching + washing needed	From "Dyeing" i.e. 253 g bleached and washed fabric	253	g	116,380,000	kg bleached and washed cotton yarn
	Pre-treatment Bleaching + washing waste	1% (of input) waste, i.e. 256 g (253/0.99) cotton yarn needed pr T-shirt, i.e. 3 g yarn waste	3	g	1,380,000	kg bleached and washed cotton yarn
	Greige yarn needed	From "Bleaching" i.e. 256 g yarn	256	g	117,760,000	kg greige cotton yarn
Yarn manufacturing (spinning)	Yarn - needed	"From - manu." i.e. 256 g yarn	256	g	117,760,000	kg cotton yarn
	Yarn - manufacturing waste	15% (of input) waste (spinning) i.e. 301 g $(256 / 0.85)$ fibre needed i.e. 45 g fibre waste	45	g	20,700,000	kg raw cotton fibre
Raw fibre (and other materials)- needed		From "yarn manu" i.e. 328 g fibre needed	301	9	138,460,000	kg raw cotton fibre

T-shirt - Theme "Location of clothing and textiles production"

Scenario 3 "Changed location, new production technology and recycling"

		T-shirt of 100\% cotton, dyed				
		Details	Numbers pr T-shirt	Unit	UK demand	
					Amount	Unit/Notes
Product		Weight total $\mathbf{2 5 0 g}$ (cotton), $200 \mathrm{~g} / \mathrm{m} 2$	250	g	460,000,000	Pieces
Recycling company		50% of input can be used to produce new T-shirts	125	g	57,500,000	kg coloured recycled cotton yarn
Recycling waste			125	g	57,500,000	kg coloured cotton yarn waste
Use		Life time 25 times 60 C washing with prewash (6.25 kg), drying (6.25 kg)	6.25	kg	1,437,500,000	Pieces washed /dried
		25 times Ironing (1.25 hours)	1.25	h	11,500,000,000	Pieces ironed
End Product - packaging		10 g (polyethylene-PE)	10	g	4,600,000	kg PE
Total manufacturing waste	Sum of product, fabric and yarn manufacturing waste				13,340,000	kg dyed or greige cotton yarn or fibre
Total Product - manufacturing waste	Sum of product manufacturing waste				2,760,000	kg dyed or greige cotton fabric
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste) + recycled fibres			115,000,000	kg T-shirt
Product - manufacturing	Product (Making up) needed	g T-shirt needed	250	g	115,000,000	kg T-shirt
	3-D-Making up (i.e. 3- D knitting) - waste	Assumed minimal waste 1% (of input) waste, i.e. $253 \mathrm{~g}(250 / 0.99)$ cotton yarn needed pr Tshirt, i.e. 3 g yarn waste.	3	g	1,380,000	kg dyed and finished cotton yarn
	Finishing needed	No finishing needed (softening was used for making up before)	0	g	0	kg dyed and finished cotton yarn
	Finishing waste 1 (Fabric inspec. + roll up on cardboard)	No finishing - No waste	0	g	0	Not relevant
	Finishing waste 2 (Drying, final fixation \& setting m2 weight)	No finishing - no waste	0	g	0	Not relevant
	Finishing - Softening needed	No finishing - no waste	0	g	0	Not relevant
	Dyeing needed	From "3-D-Making up" i.e. 253 g dyed yarn needed - assumed dyeing both recyled and greige	253	g	116,380,000	kg virgin dyed cotton yarn
	Dyeing waste	Negligible	0	g		kg virgin dyed cotton yarn
	Pretreatment Bleaching + washing needed	From "Dyeing" i.e. 253 g bleached and washed fabric	253	g	116,380,000	kg virgin bleached and washed cotton yarn
	Pre-treatment Bleaching + washing waste	1% (of input) waste, i.e. 256 g (253/0.99) cotton yarn needed pr T-shirt, i.e. 3 g yarn waste	3	g	1,380,000	kg virgin bleached and washed cotton yarn
	Virgin Greige yarn needed	From "Bleaching" minus recycling 256-125 (i.e. 131 g yarn)	131	g	117,760,000	kg virgin greige cotton yarn
	Recycled yarns	From recycling company	125	g	57,500,000	kg coloured recycled cotton yarn
Virgin Yarn manufacturing (spinning)	Virgin Yarn - needed	"From - manu." i.e. 131 g yarn	131	g	60,260,000	kg virgin cotton yarn
	Virgin Yarn manufacturing waste	15% (of input) waste (spinning) i.e. 154 g (131/0.85) fibre needed i.e. 23 g fibre waste	23	g	10,580,000	${\underset{c}{\text { kg virgin raw cotton }}}_{\text {fibre }}$
Virgin Raw fibre (and other materials)- needed		From "yarn manu" i.e. 152 g fibre needed	154	g	70,840,000	kg virgin raw cotton fibre

Blouse- Theme "Changes in consumer behaviour"

Scenario 1 "Extending the life of clothing" - "Second-hand clothing"

Carpet - Theme "New products and material selection"
Scenario 1 "Alternative fibres" - "Wool face fibres in stead of polyamide for the carpet"

		Carpet (tufted) of polyamide (PA) and polypropylene (PP) (per 1m2)				
		Details	Numbers pr carpet 2600	$\begin{gathered} \text { Unit } \\ \hline 9 \\ \hline \end{gathered}$	UK demand	
					Amount	Unit/Notes
Product		Weight total 2600g, pile (wool) 950, primary backing (woven polypropylene) 120 , secondary backing - Latex - 1430 (styrene butadiene (SB) rubber approx 460 and 1070 limestone)			8,545,385	m2 carpet
Disposal	Disposal - Total	Product 2600 g to landifill	2600	g	8,545,385	m2 carpet
	Disposal - wool		950	9	8,118,116	kg carpet
	Disposal - PP		120		1,025,446	kg carpet
	Disposal (Latex)		1530	g	13,074,440	kg carpet
Use		According to Frees, 2003 "Environmental asessment of wacuum cleaners", Working repor no. 27 Dansih Envrionmental Protrection agency (in Danish). According to this a family spends 50 h a year cleaning 100 m 2 i.e. o. 5 hours per year pr m2. Over the life time of 10 years i.e. 5 hours per m2	${ }^{5}$	${ }^{\text {h }}$	42,726,927	$\begin{array}{c\|} \hline \text { hous of carpet } \\ \text { waccum cleaning } \end{array}$
End Product - packaging		No data available - assumed zero	0	g	0	kg PE packaging
Total manufacturing waste	Sum of product, fabric and yarn manufacturing waste				9,855,678	kg dyed /finished greige fabric or yam
Total Product - manufacturing waste	Sum of productmanufacturing waste	ing			4,930,687	$\begin{aligned} & \text { kg dyed and } \\ & \text { finished carpet } \\ & \text { fabric } \end{aligned}$
		in m2			1,709,077	$\begin{aligned} & \mathrm{m} 2 \text { dyed and } \\ & \text { finished carpet } \\ & \text { fabric } \end{aligned}$
Product after manufacturing	Product (Making up) needed	Balance calculations fibre to end-product (initial fibre weight - manufacturing waste)			22,218,002	${ }^{\mathrm{kg}}$ Carpet
Product - manufacturing ("rolling, up, cutting and packing","Application of finishing and backside", "Shearing", "Dyeing and drying of grey fabric","Tufting of grey fabric" and "Polypropylene backing, grey fabric")	Product (Making up) needed	g carpet needed	2600	${ }^{9}$	22,218,002	$\mathrm{kg}^{\text {Carpet }}$
	Product (Making up) needed	m2 carpet needed	1	m2	8,545,385	$\begin{aligned} & \begin{array}{l} \mathrm{m} 2 \text { dyed and } \\ \text { finished carpet } \\ \text { fabric } \end{array} \end{aligned}$
	Making up - waste (Rolling up, cutting and packing)	0.2 m 2 waste per 1 m 2 carpet (17%) i.e.. of wool.PP and Latexfoam				
		Waste-Total-m2	0.2	m2	1,709,077	m2 dyed and finished carpet fabric waste
		Waste-Total-kg	520	9	4,443,600	kg dyed and finished carpet fabric waste
		Waste-wool	190	${ }^{9}$	1,623,623	$\begin{array}{\|c\|} \hline \mathrm{kg} \text { dyed and } \\ \text { finished PA fabric } \\ \text { waste } \end{array}$
		Waste-PP	${ }^{24}$	9	205,089	$\begin{array}{\|c\|} \hline \mathrm{kg} \text { dyed and } \\ \text { finished PP fabric } \\ \text { waste } \\ \hline \end{array}$
		Waste-Latex (approx 70\% limestone)	306	9	2,614,888	$\begin{gathered} \text { kg Latex fabric } \\ \text { waste } \end{gathered}$
	Finishing (application of finishing and backside) needed	Application of Scotchgard and backside, $1,2 \mathrm{~m} 2$ needed	1.2	m2	10,254,463	$\begin{aligned} & \begin{array}{l} \mathrm{m} 2 \text { dyed and } \\ \text { finished carpet } \\ \text { fabric } \end{array} \end{aligned}$
	Finishing waste	Negligible	0	${ }^{9}$	0	$\begin{aligned} & \begin{array}{l} \mathrm{kg} \text { dyed and } \\ \text { finished carpet } \\ \text { fabric } \end{array} \end{aligned}$
	"Shearing" needed		1.2	m2	10,254,463	$\mathrm{m}_{\substack{\text { dyed carpet } \\ \text { fabric }}}^{\text {and }}$
	"Shearing" waste	Assumed to be about 5% of finished carpet, but only face fibre "Top shearing" i.e. wool waste $\left(1.2^{*} 0.95\right)^{*} 0.05=57 \mathrm{~g}$ per m 2 carpet product	57	9	487,087	$\begin{aligned} & \mathrm{kg} \text { dyed PA yarn } \\ & \text { waste } \end{aligned}$
	Dyeing and drying of grey fabric needed	1.2 m 2	1.2	m2	10,254,463	m2 dyed carpet fabric
	Dyeing and drying of grey fabric waste	Negligible	0	9	0	$\begin{gathered} \text { g dyed carpet } \\ \text { fabric } \end{gathered}$
	Tufting of grey fabric needed	1.2 m 2	1.2	m2	10,254,463	$\begin{aligned} & \mathrm{m} 2 \text { tufted carpet } \\ & \text { fabric } \end{aligned}$
	Tufting of grey fabric waste	Negligible	0	9	0	$\begin{aligned} & \hline \mathrm{m} 2 \text { tufted carpet } \\ & \text { fabric } \end{aligned}$
Fabric - manufacturing (PP backing)	Polypropylene backing, grey fabric needed	1.2 m 2	1.2	m2	10,254,463	m2 PP backing carpet fabric
	Polypropylene backing, grey fabric waste	Negligible	0	${ }^{9}$	0	${ }^{\text {kg PP waste }}$
Yarn + fibre + other materials manufacturing (yarn directly from PA and PP company)	Yarn - needed	Wool-yarn needed from (end product mass+waste sources)	1,197	9	10,228,826	$\begin{gathered} \begin{array}{c} \mathrm{kg} \text { washed wool } \\ \text { yam } \end{array} \\ \hline \end{gathered}$
		$\begin{array}{l}\text { PP-Yarn needed (end product mass+waste } \\ \text { sources) }\end{array}$	144	9	1,230,536	kg PP yam
		No PP waste as filament yarn comes directly as filament yarn from PP factory - wool waste calculated from yarn neded above and washed wool needed below	133		1,136,536	$\begin{gathered} \mathrm{kg} \text { washed wool } \\ \text { fibre and yarn } \\ \text { waste } \end{gathered}$
	Washed wool	Washed wool needed : Wool waste approx 10% in yarn manufacturing i.e. $119710.9=1330 \mathrm{~g}$ washed wool needed	1330	${ }^{9}$	11,365,363	$\mathrm{kg}^{\text {washed wool }}$
		Wool waste calculated from washed wool above and raw wool neded below i.e	443	9	3,788,454	$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{kg} \text { weigt loss wool } \\ \text { washing } \end{array} \\ \hline \end{array}$
	Raw wool	$\begin{aligned} & \text { Raw wool needed - washed wool waste } \\ & \text { (primarily dirt, suint and minor wool) - weight } \\ & \text { loss "wool washing" is } 25 \% \text { i.e. } \end{aligned}$	1773	9	15,153,817	kg raw wool
	Other material	SB rubber - g (end product mass+waste sources)	521.8	${ }^{9}$	4,458,982	$\mathrm{kg} \mathrm{SB}^{\text {-rubber }}$
		$\begin{aligned} & \text { Ground } \\ & \text { sources) }\end{aligned}$ limestone -g (end product mass+waste	1314.2	9	11,230,346	kg limestone

Textile material transportation needed in the life cycle of the 3 textile products - scenarios

For the following scenarios there is no change in textile material transportation:

- Theme "Changes in consumer behaviour", scenario 2 "Best practice in clothes cleaning"
- Theme "New products and material selection", scenario 2 "Green manufacturing" - "Organic cotton in stead of conventional for the T-shirt" and scenario 3 "Smart functions" "Nanotechnology - stain resistant coating of T-shirt".

For theme "New products and material selection", scenario 3 "Smart functions" "Nanotechnology - Extend life time of carpet" the basic flow will be reduced by 50% of the carpet base-case.

On the following pages in this section the basic textile material transportation for other scenarios are presented. The primary sources are the same as mentioned in the corresponding section for the base cases.

Theme "Location of clothing and textiles production", scenario 1 "Changing the location of existing operations"

T-shirt of $\mathbf{1 0 0 \%}$ cotton, dyed-115,000 tons or 460 million pieces still needed to meet UK demand

Theme "Location of clothing and textiles production", scenario 1 "Changing the location of existing operations"

Blouse of $\mathbf{1 0 0 \%}$ Viscose, dyed - 6,500 tons or 32.5 million pieces still needed to meet UK demand

Theme "Location of clothing and textiles production", scenario 2 "Changed location with new production technology"

T-shirt of $\mathbf{1 0 0 \%}$ cotton, dyed-115,000 tons or 460 million pieces still needed to meet UK demand

Theme "Location of clothing and textiles production", scenario 3 "Changed location, new technology and recycling"

T-shirt of $\mathbf{1 0 0 \%}$ cotton, dyed-115,000 tons or 460 million pieces still needed to meet UK demand

Theme "Changes in consumer behaviour", scenario 1 "Extending the life of clothing" - "Second-hand clothing"

Blouse of $\mathbf{1 0 0 \%}$ Viscose, dyed - 5,200 tons or $\mathbf{2 6 . 0}$ million pieces needed to meet UK demand

For this scenario we have assumed that UK demand will drop 20% because people buy more 2 nd hand clothing.

Theme "New products and material selection", scenario 1 "Alternative fibres" - "Wool face fibres instead of polyamide"

Carpet of wool and polypropylene ($1 \mathrm{~m}^{2}$) - 22,200 tons or $\mathbf{8 , 5 4 5 , 3 8 5} \mathrm{m}^{\mathbf{2}}$ needed to meet UK demand

For this scenario we have assumed that wool is used instead of polyamide as pile (face fibre). UK demand is assumed to be the same i.e. $8,545,385$ m^{2}.

Theme "New products and material selection", scenario 3 "Smart functions" "Nanotechnology - Extend life time of carpet"

Carpet of polyamide and polypropylene ($1 \mathrm{~m}^{2}$) - 11,250 tons or $4,272,693 \mathrm{~m}^{2}$ needed to meet UK demand

For this scenario we assume that people use nanotech carpet that will last for 20 years in stead of 10 i.e.UK demand will drop 50% i.e. $0.5 * 8,545,385 \mathrm{~m}^{2}$ i.e. $0.5 * 22,500$ i.e.

Toxicity evaluation

The data presented in this section is based on the work done in connection with the Danish EDIPTEX project:

- Laursen, S.E., Hansen J., Knudsen, H.H., Wenzel, H., Larsen, H.F. and Kristensen, F.M., 2006. "EDIPTEX -Environmental assessment of textiles." Working Report no 3, 2006. Danish Environmental Protection Agency (in Danish). Is currently being translated to English by DEPA.

Many of the toxicity data developed during the EDIPTEX project has not been transferred to the GaBi-EDIP software, Version 03/2006. The data on the following page has therefore been extracted from the EDIPTEX work, entered in the GaBi-EDIP software for the T-shirt base case and used to calculate the toxicity impact for the T-shirt base case and the theme "New products and material selection", scenario 2 "Green manufacturing" - "Organic cotton instead of conventional for the T-shirt". In the EDIPTEX project report details about the methodology for calculating the toxicity fate factors can be found.

Toxicity data for the T-shirt base case

Economic and social analysis

On the following pages detailed information about the economic and social analysis can be found. The weights of the materials used in the environmental analysis of this report are taken as a reference for the numbers in the economic analysis.

Economic and social analysis - base cases

T-shirt- Base case

Country data	US
Working day (hours/day)	8.00
Working week (days/week)	5
Working year (weeks/year)	44
Working year (hours/year)	1,760
Wage ($£ /$ hour)	
Wage ($£$ /year, paid 52 weeks, 40 hours)	
Product data	$4.6 \mathrm{E}+08$

	weight/ T- shirt (kg)	total weight ('000 tons)
Weight of cotton crop	0.328	151
Weight of cotton yarn	0.279	128
Weight of cotton fabric	0.275	127
Weight of finished T-shirt	0.250	115

Weight of finished T-shirt

Product account
Cotton crop production
US Govt subsidy
Selling price of cotton
Cost of spinning
Price of cotton yarn
Cost of knitting
Price of knitted fabric
Cost of cutting and sewing
Price of finished garment
"Distribution"
Wholesale price to retailer
Cost + profit of retailer

kg/ manyear	pieces/ manyear	£/ $\mathbf{k g}$	£/ Tshirt	£million/ UK demand	total workers	UK wages (£million)
30,000		0.84	0.28	127	5,031	
		0.18	0.06	27		
		0.66	0.22	100		
25,000		1.01	0.33	152	5,134	
		1.96	0.55	252		
23,000		1.90	0.53	244	5,580	
		3.92	1.08	496		
	4,500	3.20	0.88	405	102,222	
		7.84	1.96	902		
			0.69	317		
			2.65	1,219		
			4.35	2,001		
	17,582		7.00	3,220	26,163	432

National accounts	US	China	UK
\quad Total Output	378	1,397	4,439
Intermediate consumption	100	747	2,121
\quad Subsidies	27		
Gross National I ncome	$\mathbf{2 5 2}$	$\mathbf{6 5 0}$	$\mathbf{2 , 3 1 8}$
Total employment	$\mathbf{1 0 , 1 6 5}$	$\mathbf{1 0 7 , 8 0 2}$	$\mathbf{2 6 , 1 6 3}$
\quad Total UK exports			0
\quad Total UK imports			902
UK Balance of Trade		$\mathbf{- 9 0 2}$	
\quad UK wage bill		432	
UK Operating surplus		$\mathbf{1 , 8 8 7}$	

(Units of national accounts are $£$ million)

Here are some relevant supporting comments on the calculation in the table:

Wages

Source: The UK wages are based on a leading UK retailer's annual report data.
1,073 million $£$ spent on wages/ 65,000 workers $=£ 16,500$. This is $£ 9.38$ per hour based on 1,760 hours.

Assumed exchange rate 2004

Source: Quarterly Report of an internationally operating company, via Yahoo Finance. Exchange rate British pound $(\mathfrak{£}) /$ USD $(\$)=£ 1 £ / \$ 1.822$

Retail price

Source: The retail price for a white T-shirt is derived from the T-shirt retail price of a leading UK retailer. The retail price of $£ 7$ per T-shirt (and also the price of the blouse and the carpet) will stay fixed across scenarios so one can see reductions in the retailer margin if production costs go up.

Cotton crop production

Productivity

Source: United States Department of Agriculture; National Agricultural Statistics Service. Website: www.nass.usda.gov

There are 173,446 jobs on cotton farms in the USA (2005).
In 2005/06: 5,201 million kilograms of cotton harvested.
This is about 30,000 kilograms per worker per year.

Cotton price

Source: National Cotton Council of America. Website: www.cotton.org
Price in calendar year 2004: $\$ 0.55$ per Lb or $\$ 1.21$ per Kg
This is $£ 0.66$ / kilogram. This is assumed to exclude subsidies.

Cotton subsidies

Source: United States Department of Agriculture. National Agricultural Statistics Service, Crop values 2004 Summary (February 2005).
5.1 billion kilograms of cotton produced in 2004/ 2005

Other source: Environmental Working Group's Farm Subsidy Database. Website: www.ewg.org
Subsidies in 2004: \$ 1,649,366,720
Subsidies per kg: $\$ 0.326$ or $£ 0.179$

Cotton spinning

Productivity

Source: US Census Bureau. Website: www.census.gov
USA employment in fibre, yarn and thread mills, 2005: 54,000 employees
Spun cotton yarn production USA: 1.36 billion kilograms
Assuming all yarns produced are cotton yarns, production per employee is 25,000 kilograms.

Cotton yarn prices

Source: US Census Bureau, Yarn production: 2004, Issued May 2005
Export price of cotton yarn, estimate: $\$ 3.15$ / kilogram, so $£ 1.96$ / kilogram

Knitting fabric

Productivity

Source: Meenu Tewari (2005) Post-MFA adjustments in India's Textile and Apparel Industry: Emerging issues and trends. See table on page 27, which is based on: Khanna (1993): The challenge of Global Competition in the 1990s. ICRIER Memo.

For T-shirt production China is 1.53 times more productive than India. Namely, production per worker per day in China is 15.3 T-shirts as opposed to 10 T -shirts per worker per day in India.

India productivity: 15,000 kilograms of cloth per worker per year.
China productivity: 15,000 kilograms $* 1.53=23,000$ Kilograms per worker per year

Fabric prices

Source: Manufacturers' websites showing China imports. See http://china.org.cn; www.cotton.org Other source: Leading UK retailer designer estimate; yarn price is 50% of fabric price.
Estimate price per kilogram: $£ 3.92$.

Cutting and sewing

Productivity

Source: Meenu Tewari (2005) Post-MFA adjustments in India's Textile and Apparel Industry: Emerging issues and trends. P. 27: Source: Khanna, 1993, The challenge of Global Competition in the 1990s. ICRIER Memo.

In 1994, productivity in T-shirt production was 13.96 pieces per worker per day. This is assumed to have grown 10% higher, which comes down to 15 per worker per day. Assumed: 50 work weeks of 6 days each a year. Productivity in cutting and sewing, China: $15 * 50 * 6=4,500$ pieces per worker per year.

Finished garment price
Source: Manufacturers' websites investigated. Website: www.emergingtextiles.com

Other source: Leading UK retailer's designer estimate (based on manufacturing cost in Egypt):
Fabric price is estimated to be 50% of finished garment price. Garment price is: $£ 7.84$ per kilogram, or $£ 1.96$ per T-shirt.

Wholesale

Wholesale price

Source: Several fabric prices compared. Website: www.emergingtextiles.com
Other source: Leading UK retailer's designer estimate
The wholesale price of a T-shirt is around 40% of the retail price. The finished garment price is around 70% of the wholesale price. Price estimate: Wholesale price is estimated to be $£ 10.60$ per kilogram or $£ 2.65$ per T-shirt.

Retail

Productivity and retail garment price

Source: Leading UK retailer company data.
Sales: $£ 8$ billion. Number of employees: 64,000 . Our assumed price of a T-shirt: $£ 7$ per T-shirt. $£ 8$ billion/ 64,000 employees $/ £ 7=17,582$ pieces sold per worker per year.

Blouse - Base case

Country data	India	UK
Working day (hours/day)	8.00	8.00
Working week (days/week)	6	5
Working year (weeks/year)	50	44
Working year (hours/year)	2,400	1,760
Wage ($£ /$ /hour)		9.38
Wage ($£$ /year, paid 52 weeks, 40 hours)		16,500
Product data		
Number blouses sold in UK	$3.3 E+07$	
		weight/
	total weight	
	Blouse (kg)	('000 tons)
Weight of viscose yarn/ fibres	0.230	7
Weight of viscose yarn	0.230	7
Weight of viscose fabric	0.230	7
Weight of finished blouse	0.200	7
		7

Product account	$\underset{\text { year }}{\text { kg/ man- }}$	pieces/ manyear	£/ kg	£/ Blouse	£million/ UK demand	total workers	UK wages (£million)
Viscose yarn production	18,000		3.04	0.70	23	415	
Selling price of viscose yarn			3.04	0.70	23		
Cost of weaving	15,000		3.70	0.85	28	498	
Price of woven fabric			6.74	1.55	50		
Cost of cutting and sewing		3,500	7.22	1.66	54	9,286	
Price of finished garment			13.96	3.21	104		
"Distribution"				3.79	123		
Wholesale price to retailer				7.00	228		
Cost + profit of retailer				15.00	488		
Price to consumer		17,582		22.00	715	1,848	30
National accounts	India	UK					
Total Output	177	943					
Intermediate consumption	73	332					
Subsidies							
Gross National Income	104	611					
Total employment	10,199	1,848					
Total UK exports		0					
Total UK imports		104					
UK Balance of Trade		-104					
UK wage bill		30					
UK Operating surplus		580					

(Units of national accounts are $£$ million)

Here are some relevant supporting comments on the calculation in the above table:

Viscose yarn production

Productivity

Source: The National Textile Corporation Limited (NTC) Annual Report 2004/05 Chapter XII Public Sector Undertakings.
In this company 31,042 people are on payroll. 500 million kilograms of yarn, and 225 million meters of cloth assumed to weigh 45 million kilograms are produced. Ratio yarn to cloth production is 9:1. According to this ratio and based on 31,000 workers, 3,100 employees are assumed to work in cloth production, whereas 27,900 work in yarn production.
One worker produces about 500 million kilograms/ 27,900 workers $=18,000$ kilograms of yarn per year.

Price of viscose yarn

Source: Wholesalers and prices of viscose investigated at www.fibre2fashion.com; www.emergingtextiles.com

Price for yarn estimated at $£ 3.04$ per kilogram or $£ 0.70$ per blouse.

Weaving

Productivity

Source: The National Textile Corporation Limited (NTC) Annual Report 2004/05 Chapter XII Public Sector Undertakings.

As before, 45 million kilograms of cloth are produced by 3,100 people, coming down to 45 million kilograms/ 3,100 workers $=15,000$ kilograms of cloth produced per worker per year.

Cost of woven fabric

Source: Wholesaler websites like www.dharmatrading.com; www.manhattanfabrics.com
Other source: Assumptions cotton T-shirt. Yarn price is assumed to be 50% of the fabric price.
Price for fabric estimated at $£ 6.74$ per kilogram or $£ 1.55$ per blouse.

Cutting and sewing

Productivity

Source: Meenu Tewari (2005) Post-MFA adjustments in India's Textile and Apparel Industry: Emerging issues and trends. P. 27: Source: Khanna, 1993, The challenge of Global Competition in the 1990s ICRIER Memo.

In 1994, productivity was 10.15 blouses produced per worker per day. We assume that currently productivity has gone up by 10%, which is rounded to that one worker produces 11.5 blouses per day. Assumed: 50 work weeks of 6 days each a year. One worker in India produces:
$11.5 * 6 * 50 \approx 3,500$ blouses per year

Cost of cutting and sewing

Source: wholesaler websites.www.globalsourcing.com; www.birlaviscose.com;
www.whaleys-bradford.ltd.uk
Other source: T-shirt assumption, price of fabric is about 50% of the finished garment price.
Fabric is about $£ 3.21$ for one blouse, which is: $(1,000 / 230) * £ 3.21=£ 13.96$ per kilogram.

Wholesale

Price

Source: estimate of a leading UK retailer.
The finished garment price is assumed to be 50 per cent of the wholesale price, and the wholesale price is assumed to be 30% of the retail price. Estimate for wholesale: $£ 35$ per kilogram or $£ 7$ per blouse.

Retail

Productivity and retail garment price

Productivity: same productivity assumed as in T-shirt case.
The profit margin for a blouse is assumed to be higher than for a plain white T -shirt since it is a fashionable item than can be 'up-sold' as opposed to a basic T-shirt. Estimate of a leading UK retailer's typical viscose blouse: $£ 22$.

Carpet - Base case

Country data		USA	UK				
Working day (hours/day)		8.00	8.00				
Working week (days/week)		5	5				
Working year (weeks/year)		44	44				
Working year (hours/year)		1,760	1,760				
Wage ($£$ /hour)			9.38				
Wage ($£$ /year, paid 52 weeks, 40 hours)			6,500				
Product data							
Number of m2 sold in UK	$8.5 \mathrm{E}+06$						
	total weight ('000 tons)						
Components							
Weight of polypropylene yarn/ fibres		0.160	1				
Weight of polyamide yarn		1.386	12				
Weight of ground limestone		1.196	10				
Weight of styrene butadiene rubber		0.484	4				
Backings and pile production of carpet							
Weight of secondary backing		1.400	12				
Weight of primary backing		0.133	1				
Weight of pile		1.100	9				
Weight of finished carpet		2.633	22				
Product account							
	kg/ manyear	pieces (1 m2)/manyear	f/ kg	£/ Carpet	fmillion/ UK demand	total workers	UK wages (fmillion)
Primary backing							
Polypropylene yarn production	170,000		0.55	0.09	0.750	8	
Cost of production primary backing-polypropylene yarn			0.44	0.06	0.500		
Price of primary backing - woven polypropylene		146,667	1.10	0.15	1.250	58	
Secondary Backing							
Ground Limestone production	1,500,000		0.01	0.02	0.143	3	
Styrene Butadiene Rubber production	60,000		0.82	0.40	3.391	7	
Cost of production secondary backing-SBR and							
limestone			0.30	0.41	3.535		
Price of secondary backing - SBR 400 and 1000 limestone		146,667	0.59	0.83	7.069	58	
Carpet Pile							
Polyamide yarn production	280,000		4.26	5.90	50.455	42	
Cost of production pile (tufting)	146,667		3.15	3.47	29.632	58	
Price of pile-polyamide			8.52	9.37	80.087		
Price of finished carpet			3.93	10.35	88.407		11.06
"Distribution"			2.91	7.65	65.410		
Wholesale price to retailer			6.84	18.00	153.817		
Cost + profit of retailer			4.56	12.00	102.545		
Price to consumer		17,582	11.39	30.00	256.362	486	
National accounts	USA	UK					
Total Output	51	502					
Intermediate consumption		297					
SubsidiesGross National Income							
Total employment	50	670					
Total UK exports		0					
Total UK imports		51					
UK Balance of Trade		-51					
UK wage bill		11					
UK Operating surplus		194					
(Units of national accounts are $£$ million)							

Here are some relevant supporting comments on the calculation in the table:

Materials

Polypropylene productivity

Source: US Department of Labor: Bureau of Labor Statistics. Chemical manufacturing, except pharmaceutical and medicine manufacturing. Website: www.bls.gov

Yearly propylene production: 15,345 metric tonnes.
Total propylene workers: 89,415 people.
Production per employee per year:
15,345 metric tonnes $/ 89,415$ employees $=170,000$ kilograms per employee per year.

Polypropylene price

Source: www.yarnsandfibres.com; British Plastic \& Rubber On-line.
Website: www.polymer-age.co.uk
Yarn and fibre prices checked. Estimate; polypropylene yarn for the carpet: $£ 0.55$ per kilogram.

Styrene Butadiene Rubber productivity

Source: Synthetic Rubber Manufacturing: 2002, Economic Census 2000. Manufacturing, Industry Series, Issued January 2005. Website: www.census.gov

Styrene-Butadiene production in 2002: 403,750 tonnes.
Total workers: 6,395 people.
Production per employee per year:
403,750 tonnes/ 6,395 workers $=60,000$ kilograms produced per employee per year rounded.

Styrene Butadiene Rubber price

Source: Crisil, Indian company in finance and advice. CRIS INFAC Analysis, July 08, 2004 Website: www.crisil.com

Source: K.G Kumar (December 23, 2004) Rubber Bands. In: The Hindu Business Line. Website: www.thehindubusinessline.com

Price estimate: $£ 0.82$ per kilogram.

Polyamide (nylon) productivity

Source: News article New York Times "Monsanto to cut nylon production". Reuters. Published 1981 Website: www.nytimes.com
Production cut: 56,700,000 kilograms of nylon.
Number of workers affected: 200 people.
Productivity per employee per year:
56.7 metric tonnes/ 200 people $=280,000$ kilograms produced per employee per year (rounded).

Polyamide price

Source: www.yarnsandfibers.com; www.dailyexcelsior.com; www.polymer-age.co.uk
Price estimate: $£ 4.686$ per kilogram.

Limestone productivity

Source: National Statistics (www.statistics.gov.uk) Mineral Extraction in Great Britain.Business Monitor PA1007. 2003. London: TSO

Limestone extraction in GB: 7,807 metric tonnes.
Employment in limestone (GB, 2003): 5,508 people.
Productivity per employee per year:
7,807 metric tonnes/ 5,508 people $=1,500$ tonnes per employee per year (rounded).

Limestone price

Source: Department of Agriculture and Rural Development. Search for data on limestone production and prices. Website: www.dardni.gov.uk

Estimate for limestone price: $£ 14$ per tonne or $£ 0.014$ per kilogram.

Carpet tufting

Productivity

Source: International Labour Encyclopaedia. Carpets and Rugs. The Carpet and Rug Institute. Website: www.ilo.org
A carpet tufting machine can produce $1,000-2,000 \mathrm{~m}^{2}$ per day (in 8 hours).
Per 24 hours that is $3,000-6,000 \mathrm{~m}^{2}$. Machines are assumed to work 350 days per year.
This adds up to 1.05 million m^{2} to 2.1 million m^{2} of carpet per year.
A polyamide carpet is assumed to be tufted at high speed, $6,000 \mathrm{~m}^{2}$ per day, so 2.1 million m^{2} per year.
For $8,545,385 \mathrm{~m}^{2}$ we need:
8.545 million $\mathrm{m}^{2} / 2.1$ million $\mathrm{m}^{2}=4.07$ machines.

Total machine hours needed per year: $350 * 24 * 4.07=34,181.54$ hours.
2 people are assumed to be needed for one machine. Ratio machine to worker: 1:2 or 0.33 .
$34,181.54 / 1,760 / 0.33=58.26$ people are needed for carpet tufting yearly.
They produce on average:
8.545 million $\mathrm{m}^{2} / 58.26=146,667 \mathrm{~m}^{2}$ per worker per year.

Price

The price of tufted polyamide pile for the carpet is assumed to be twice the price of polyamide.
So: $£ 4.26 * 2=£ 8.52$ per kilogram.

Primary backing

Productivity

Same productivity assumed as carpet tufting: 146,667 m^{2} per worker per year.

Price

The price of woven polypropylene for the carpet is assumed to be twice the price of polypropylene.
So: $£ 0.55 * 2=£ 1.10$ per kilogram.

Secondary backing

Productivity

Same productivity assumed as carpet tufting: 146,667 m^{2} per worker per year.

Price

The price of latex for the carpet is assumed to be twice the price of SBR and limestone.
So: $(£ 0.014+£ 0.82)=£ 0.83$ per carpet or $£ 0.59$ per kilogram.

Wholesale

Price

The wholesale price is assumed to be 60 per cent of the retail price (lower profit margin for the retailer than for garments assumed). So $30^{*} 0.6=£ 18$ per carpet or $£ 6.84$ per kilogram.

Retail

Productivity and retail price

Productivity: same productivity assumed as in T-shirt case.

Price

Source: Several retailers and wholesalers compared to make an estimate for the wholesale and retail price. Websites: www.carpetinfo.co.uk; www.georgiacarpet.com; www.globalsources.com; http://www.cholleton.com

Estimate: retail price is $£ 30$ per m^{2} or $£ 11.39$ per kilogram.

Economic and social analysis - scenarios

T-shirt- Theme "Location of clothing and textiles production"
 Scenario 1 "Changed location"

Product account:
Cotton crop production
US Govt subsidy
Selling price of cotton
Cost of spinning
Price of cotton yarn
Cost of knitting
Price of knitted fabric
Cost of cutting and sewing
Price of finished garment
"Distribution"
Wholesale price to retailer
Cost + profit of retailer
Price to consumer

kg/ manyear	pieces/ manyear	$\mathbf{£ / ~ k g ~}$	£/ T-shirt	£million/ UK demand	total workers	UK wages (Emillion)
30,000		0.84	0.28	127	5,031	
		0.18	0.06	27		
		0.66	0.22	100		
25,000		1.01	0.33	152	5,134	
		1.96	0.55	252		
16,867		$1.9+x$	$0.53+x$	244	7,609	
		3.92	1.08	496		
	3,300	$3.2+x$	$0.88+x$	405	139,394	
		7.84	1.96	902		
			0.69	317		
			2.65	1,219		
	17,582		4.35	2,001	26,163	2,857
			7.00	3,220		

National accounts
National accounts
Total Output
Total Output
Intermediate consumption
Intermediate consumption
Subsidies
Subsidies
Gross National I ncome
Gross National I ncome
Total employment
Total employment
Total UK exports
Total UK exports
Total UK imports
Total UK imports
UK Balance of Trade
UK Balance of Trade
UK wage bill
UK wage bill

US	China	UK
378	0	5,837
100	0	2,868
27	0	
$\mathbf{2 5 2}$	$\mathbf{0}$	$\mathbf{2 , 9 6 8}$
$\mathbf{1 0 , 1 6 5}$	$\mathbf{0}$	$\mathbf{1 7 3 , 1 6 6}$
		0
		252
		$\mathbf{- 2 5 2}$
		2,857
		$\mathbf{1 1 1}$

(Units of national accounts are $£$ million)

Here are some relevant supporting comments on the calculation in the above table:

Cost of knitting, cutting, and sewing

When production shifts from China to the UK, production costs would go up, production in the UK being more expensive than in China. We do not know the exact cost add-up. Hence, the table shows a cost add-up of $+x$.

Productivity in knitting, cutting, and sewing

Working years in China consist of 2,400 hours whereas working weeks in the UK are 1,760 hours. Therefore productivity per year goes down to:
$23,000 *(1,760 / 2,400)=16,867$ kilograms of fabric per worker per year.
$4,500 *(1,760 / 2,400)=3,300$ kilograms of finished garment per worker per year.
Product account

	kg/ manyear	pieces/ manyear	$\mathbf{f / ~ k g ~}$	£/ Blouse	Emillion/ UK demand	total workers	UK wages (fmillion)
Viscose yarn production	13,200		$3.04+x$	$0.7+x$	23	566	
Price of viscose yarn			3.04	0.70	23		
Cost of weaving	11,000		$3.70+x$	$0.85+x$	28	680	
Price of woven fabric			6.74	1.55	50		
Cost of cutting and sewing		2,567	$7.22+x$	$1.66+x$	54	12,662	
Price of finished garment			13.96	3.21	104		
"Distribution"				3.79	123		
Wholesale price to retailer				7.00	228		
Cost + profit of retailer				15.00	488		
Price to consumer		17,582		22.00	715	1,848	260

National accounts	India	UK
Total Output	0	1,120
Intermediate consumption	0	405
Subsidies		
Gross National Income	$\mathbf{0}$	$\mathbf{7 1 5}$
Total employment	$\mathbf{0}$	$\mathbf{1 5 , 7 5 7}$
Total UK exports		0
Total UK imports		0
UK Balance of Trade		$\mathbf{0}$
UK wage bill		$\mathbf{4 5 5}$
UK Operating surplus		$\mathbf{4 5 5}$

(Units of national accounts are $£$ million)

Here are some relevant supporting comments on the calculation in the above table:

Cost of yarn production, weaving, cutting, and sewing

When production shifts from India to the UK, production costs would go up, production in the UK being more expensive than in India. We do not know the exact cost add-up. Hence, the table shows a cost add-up of $+x$.

Productivity in yarn production, weaving, cutting, and sewing
Working years in India consist of 2,400 hours, whereas working weeks in the UK are 1,760 hours. Therefore productivity per year goes down to:
$18,000 *(1,760 / 2,400)=13,200$ kilograms of yarn per worker per year $15,000 *(1,760 / 2,400)=11,000$ kilograms of fabric per worker per year $3,500 *(1,760 / 2,400)=2,567$ kilograms of finished garment per worker per year

T-shirt Theme "Location of clothing and textiles production"
 Scenario 2 "Changed location with new production technology"

$4.6 \mathrm{E}+08$	
weight/ T-	total weight
shirt (kg)	('000 tons)
0.301	138
0.256	118
0.250	115
0.250	115

Product account							
	kg/ manyear	pieces/ manyear	$\mathbf{f /} \mathbf{k g}$	£/ T-shirt	£million/ UK demand	total workers	UK wages (£million)
Cotton crop production	30,000		0.84	0.25	116	4,615	
US Govt subsidy			0.18	0.05	25		
Selling price of cotton			0.66	0.20	92		
Cost of spinning	25,000		1.01	0.30	139	4,710	
Price of cotton yarn			1.96	0.50	231		
Cost of 3D knitting		458,333	1.31	0.33	150	1,004	
Price of knitted fabric			x	x	x		
Cost of cutting and sewing			x	x	x		
Price of finished garment			7.84	0.83	381		
"Distribution"				0.69	317		
Wholesale price to retailer				1.52	699		
Cost + profit of retailer		17,582		5.48	2,521	26,163	448
Price to consumer				7.00	3,220		

National accounts	US	China	UK
Total Output	347	0	4,300
Intermediate consumption	92	0	1,311
Subsidies	25	0	
Gross National Income	$\mathbf{2 3 1}$	$\mathbf{0}$	$\mathbf{2 , 9 8 9}$
Total employment	$\mathbf{9 , 3 2 6}$	$\mathbf{0}$	$\mathbf{2 7 , 1 6 6}$
Total UK exports			0
Total UK imports			231
UK Balance of Trade		$\mathbf{- 2 3 1}$	
UK wage bill		448	
UK Operating surplus	$\mathbf{2 , 5 4 1}$		

(Units of national accounts are $£$ million)
Here are some relevant supporting comments on the calculation in the above table:

3D knitting

Productivity

3D knitting machine: 1,250 men's briefs produced per machine per day (Source: Santoni data)
Machines are assumed to produce 350 days a year (International Production Cost Comparison 2003, International Textile Manufacturers Federation; ITMF)

Assumed: 5 machines are controlled by 1 person at the same time.
$350 * 1,250=437,500 \mathrm{~T}$-shirts produced per machine per year.
460 million/ $437,500=1,051.4$ machines needed per year.
1 machine makes $350 * 24=8,400$ hours per year.
All machines required make $8,400 * 1,051.41=8,832,000$ hours per year.
$8,832,000 / 1,760 / 5=1,004$ people are needed for T-shirt production in the UK.

Cost

Machines required: 1,051.
1 Machine is assumed to cost $£ 100,000$ a year. Cost of capital assumed 20%, so 20,000 .
Cost of 1,051 machines required: $1,051 * £ 20,000=£ 21,020,000$.
Cost of employee per year: $£ 16,500$.
Cost of 1,004 employees per year: $£ 16,500 * 1,004=£ 16,560,000$.
Total capital and labour costs: $£ 21.02$ million $+£ 1.56$ million $=£ 37.58$ million.
Costs add up assumed: $37.58 * 2=£ 75.16$ million.
Per T-shirt this is: $(75.16$ million $/ 460$ million $)=0.163$. Actual costs are estimated at: $0.163 * 2=$ $£ 0.33$ rounded.

T-shirt - Theme "Location of clothing and textiles production"

Scenario 3 "Changed location, new production technology and recycling"

Product data Number T-shirts sold in UK	$4.6 \mathrm{E}+08$	
	weight/ Tshirt (kg)	total weight ('000 tons)
Weight of cotton crop	0.154	71
Weight of virgin fibres	0.131	60
Weight of recycled fibres	0.125	58
Weight of total yarn	0.253	116
Weight of cotton fabric	0.250	115
Weight of finished T-shirt	0.250	115

Product account	kg/ manyear	pieces/ manyear	$\mathbf{£} / \mathbf{k g}$	£/ T-shirt	£million/ UK demand	total workers	UK wages (fmillion)
Cotton crop production	30,000		0.84	0.13	60	2,361	
US Govt subsidy			0.18	0.03	13		
Selling price of cotton			0.66	0.10	46		
Selling price of recycled fibres			0.55	0.07	32	215	
Cost of spinning 'Eco-yarn'	25,000		2.01	0.51	234	4,655	
Price of Eco-cotton yarn			2.68	0.68	312		
Cost of 3D knitting		458,333	1.31	0.33	150	1,004	
Price of knitted fabric			x	x	X		
Cost of cutting and sewing			x	x	x		
Price of finished garment			4.02	1.01	463		
"Distribution"				0.69	317		
Wholesale price to retailer				1.70	780		
Cost + profit of retailer		17,582		5.30	2,440	26,163	529
Price to consumer				7.00	3,220		

National accounts	US	China	UK
Total Output	60	0	4,807
Intermediate consumption	0	0	1,633
Subsidies	13	0	0
Gross National Income	$\mathbf{4 7}$	$\mathbf{0}$	$\mathbf{3 , 1 7 4}$
Total employment	$\mathbf{2 , 3 6 1}$	$\mathbf{0}$	$\mathbf{3 2 , 0 3 6}$
Total UK exports			0
Total UK imports			46
UK Balance of Trade		$\mathbf{4 6}$	
UK wage bill		529	
UK Operating surplus		$\mathbf{2 , 6 4 5}$	

(Units of national accounts are $£$ million)

Here are some relevant supporting comments on the calculation in the above table:

Cotton eco yarn spinning

Productivity

Total number of employees involved in the recycling business is derived from the number of people working in the 3D knitting business.
Calculation: $1,004 * £ 0.07 / £ 0.33=215$ employees.

Selling price of recycled fibres

Source: USA website for second hand clothing bales sales: www.abcloseouts.com
Prices are from about 1 USD per kilogram, which equals $£ 0.55$ per kilogram.

Cost of spinning eco-yarn

Spinning eco-yarn is assumed to be a more complicated and slower process than spinning regular cotton yarn; 50% of the yarn consists of recycled fibres, which are often shorter and vary more in quality than virgin fibres.
Spinning costs are assumed to be twice as high as regular spinning: $£ 1.006 * 2=£ 2.01$.

Blouse - Theme "Changes in consumer behaviour"

Scenario 1 "Extending the life of clothing" - "Second-hand clothing"

Product data							
Number Blouses sold in UK	$2.6 \mathrm{E}+07$						
Number of second hand blouses in UK	$6.5 \mathrm{E}+06$						
	weight/ Blouse (kg)	total weight ('000 tons)					
Weight of viscose yarn/ fibres	0.230	6					
Weight of viscose yarn	0.230	6					
Weight of viscose fabric	0.230	6					
Weight of finished blouse	0.200	5					
Weight of finished blouse - second hand	0.200	1					
Product account							
	kg/ manyear	pieces/ manyear	£/ kg	£/ Blouse	£million/ UK demand	total workers	UK wages (£million)
Viscose yarn production	18,000		3.04	0.70	18	332	
Selling price of viscose yarn			3.04	0.70	18		
Cost of weaving	15,000		3.70	0.85	22	399	
Price of woven fabric			6.74	1.55	40		
Cost of cutting and sewing		3,500	7.22	1.66	43	7,429	
Price of finished garment			13.96	3.21	83		
"Distribution"				3.79	99		
Wholesale price to retailer				7.00	182		
Cost + profit of retailer				15.00	390		
Price to consumer		17,582		22.00	572	1,479	
Price to consumer- second hand sale		17,582		2.00	13	370	30
National accounts	India	UK					
Total Output	142	767					
Intermediate consumption	58	265					
Subsidies							
Gross National I ncome	83	502					
Total employment	8,159	1,848					
Total UK exports		0					
Total UK imports		83					
UK Balance of Trade		-83					
UK wage bill		30					
UK Operating surplus		471					
(Units of national accounts are $£$ million)							

Here are some relevant supporting comments on the calculation in the above table:

Number of (second hand) blouses sold in UK

In this scenario the assumption is that UK demand for blouses drops by 20% because people buy more second hand clothing. 26 million (80% of 32.5 million) regular blouses are sold, whereas 6.5 second hand blouses are sold (20% of 32.5 million). The weight of second hand blouses is 200 grams.

Second hand price and sale

Source: used-clothes-sale.vivastreet.co.uk; www.abcloseouts.com
Estimate made from sources: a second hand viscose blouse can be bought for about $£ 2$ per piece.
Productivity in second hand sale is set equal to retail productivity:
17,582 pieces sold per employee per year.

T-shirt - Theme "Changes in consumer behaviour"

Scenario 2 "Best practice in cleaning clothes"

The economic impact for this best practice scenario is equal to the base case. However, for consumers there are economic advantages on a micro scale. These are described in the text of the report, but there is no economic scenario analysis executed for this scenario.

T-shirt - Theme "New products and material selection"

Scenario 2 "Green manufacturing" "Organic cotton instead of conventional"

Here are some relevant supporting comments on the calculation in the above table:

Cotton crop production

Selling price of cotton

Source: Organic Trade Association: The 2005 cotton survey. Website: www.ota.com
Price of organic cotton is around 3.25 US dollars per kilogram, which is $£ 1.33$ per kilogram.
The spinning costs stay the same, but due to the increase in the fibre price, the cost of yarn and knitted fabric, and the finished garment and wholesale price go up.

Carpet - Theme "New products and material selection"

Scenario 1 "Alternative fibres" - "Wool face fibres in stead of polyamide for the carpet"

Product data		
Number of m2 sold in UK	$8.5 \mathrm{E}+06$	
	$\begin{gathered} \text { weight/ } \\ \text { carpet (kg) } \end{gathered}$	total weight ('000 tons)
Components		
Weight of polypropylene yarn/ fibres	0.144	1
Weight of washed wool	1.330	11
Weight of woollen yarn	1.200	10
Weight of ground limestone	1.315	11
Weight of styrene butadiene rubber	0.520	4
Backings and pile production of carpet		
Weight of secondary backing	1.530	13
Weight of primary backing	0.120	1
Weight of pile	0.950	8
Weight of finished carpet	2.600	22

National accounts	USA	UK
Total Output	0.68	716
Intermediate consumption		460
Subsidies	$\mathbf{0 . 6 8}$	$\mathbf{2 5 6}$
Gross National Income	$\mathbf{7}$	$\mathbf{1 , 6 4 0}$
Total employment		0
Total UK exports		0.68
Total UK imports		$\mathbf{0 . 6 8}$
UK Balance of Trade	27	
UK wage bill		$\mathbf{2 2 9}$

Here are some relevant supporting comments on the calculation in the above table:

Materials

Wool productivity

Same productivity assumed as cotton production:
30,000 kilograms per worker per year for washed wool production.
25,000 kilograms per worker per year for cotton yarn production.

Wool prices

Source: Reducing costs through waste management: The woolen sector. Environmental Technology Best Practice Program. GG79 Guide. 1997. Website: www.p2pays.org

Price assumption is $£ 7$ per kilogram for woollen yarn. Our estimate: $£ 7$ per kilogram.
The washed wool price is estimated to be half the woollen yarn price thus: $£ 3.50$ per kilogram.

Carpet pile

Productivity

See base case. However now we assume the slower production process, because woollen yarn breaks more easily. Production per machine is now $1.05 \mathrm{~m}^{2}$ of carpet per year.
For $8,545,385 \mathrm{~m}^{2}$ we need:
8.545 million $\mathrm{m}^{2} / 1.05$ million $\mathrm{m}^{2}=8.14$ machines.

Total machine hours needed per year: $350 * 24 * 8.14=68,363.08$ hours
2 people are assumed to be needed for one machine. Ratio machine to worker: 1:2 or 0.33 .
$68,363.08 / 1,760 / 0.33=116.53$ people are needed for carpet tufting yearly.
Thus they produce on average:
8.545 million $\mathrm{m}^{2} / 116.53=73,333 \mathrm{~m}^{2}$ per worker per year.

Price

The price of tufted woollen pile for the carpet is assumed to be twice the price of wool.
So: $£ 7.5^{*} 2=£ 15$ per kilogram.

Primary and secondary backing

Productivity

For the primary and secondary backing the same productivity is assumed as for tufting: 73,333 m^{2} per worker per year.

Cost of production- pile

Source: Stakeholder feedback
Production of a woollen carpet is assumed to be more expensive than producing a polyamide The cost of tufting woollen pile is assumed to be twice as high as tufting polyamide pile.

So: $£ 3.47 * 2=£ 6.94$ per carpet.

T-shirt - Theme "New products and material selection"

Scenario 3 "Smart functions" - "Nanotechnology - stain resistant coating"
Product account
Cotton crop production
US Govt subsidy
Selling price of cotton
Cost of spinning
Price of cotton yarn
Cost of knitting
Price of knitted fabric
Cost of cutting, sewing and nano-finish
Price of finished garment
"Distribution"
Wholesale price to retailer
Cost + profit of retailer
Price to consumer
(Units of national accounts are $£$ million)

```
National accounts
National accounts
    Total Output
    Total Output
    Intermediate consumption
    Intermediate consumption
    Subsidies
    Subsidies
Gross National I ncome
Gross National I ncome
Total employment
Total employment
    Total UK exports
    Total UK exports
    Total UK imports
    Total UK imports
UK Balance of Trade
UK Balance of Trade
    UK wage bill
    UK wage bill
Operating surplus
Operating surplus

\section*{Cost of cutting, sewing, and nano-finish}

\section*{Nano-finish}

In this case the T-shirt will be treated with a nano-coating. So after the fabric is cut and sewn into a T-shirt a nano-coating will be applied. This is assumed to double the original cost of cutting and sewing. \(3.2 * 2=£ 6.4\). The price of the finished garment and the wholesale price will go up as well.

\section*{Carpet- Theme "New products and material selection"}

Scenario 3 "Smart functions" "Nanotechnology - Extend life time of carpet"
\begin{tabular}{llrl}
\begin{tabular}{l} 
Product data \\
Number of m2 sold in UK
\end{tabular} & & & \\
\hline
\end{tabular}

Here are some relevant supporting comments on the calculation in the above table:

\section*{Number of \(\mathbf{m}^{\mathbf{2}}\) sold in the UK}

The demand for carpets drops by 50 per cent, because the nano-application increases the carpet lifetime from 10 years to 20 years.

\section*{Polyamide yarn production}

The 'nano-finish' is applied at the polyamide yarn production stage. Cost for polyamide production therefore is assumed to double: \(£ 4.26^{*} 2=£ 8.52\).

\section*{Price of pile}

The price of pile for the carpet is assumed to be twice as high as the price of polyamide with nano-application. So: \(£ 8.52 * 2=£ 17.04\) per kilogram or \(£ 15.27\) per carpet.```


[^0]:    ${ }^{\text {A }}$ GaBi-EDIP software package, Version 4.2. 03/2006. For more information about the GaBi-EDIP software database and tool visit the Danish LCA-center web-site: http://www.dk-teknik.dk/cms/site.asp?p=2456
    ${ }^{B}$ Laursen, S.E., Hansen J., Knudsen, H.H., Wenzel, H., Larsen, H.F. and Kristensen, F.M., 2006. "EDIPTEX -Environmental assessment of textiles." Working Report no 3, 2006. Danish Environmental Protection Agency (in Danish). Is currently being translated to English by DEPA.

[^1]:    C "EDIP, 1997, Global warming potential (GWP 100 years)"
    D "EDIP 1997, Env. imp. eval. (PET W, EU 2004)" and based on EDIP 1997 Environmental Impact Normalization - "EDIP 1997, Env. Imp. norm. (PE W, EU 1994)"

[^2]:    E "EDIP, 1997, Global warming potential (GWP 100 years)"
    F "EDIP 1997, Env. imp. eval. (PET W, EU 2004)" and based on EDIP 1997 Environmental Impact Normalization - "EDIP 1997, Env. Imp. norm. (PE W, EU 1994)"

[^3]:    G "EDIP, 1997, Global warming potential (GWP 100 years)"
    H "EDIP 1997, Env. imp. eval. (PET W, EU 2004)" and based on EDIP 1997 Environmental Impact Normalization - "EDIP 1997, Env. Imp. norm. (PE W, EU 1994)"

    I "EDIP 1997, Toxicity eval. (PET EU 2004)" and based on EDIP 1997 normalization "EDIP 1997, Toxicity norm. (PE EU 1994)"

[^4]:    J GaBi, 2004. "Gabi 4 Manual", Version February 2004.

