

Department of Engineering Institute for Manufacturing

METIIA Course Handbook 2015-16

Disclaimer

We have endeavoured to ensure that the information contained in this handbook is as accurate as possible. However, it is likely that minor changes and updates may need to be made to some sections during the course of the year.

We will ensure that all updates are communicated to you by email and/or posted on the MET IIa Moodle site.

Contents

MET IIa People	5
Year group	
Course overview & timetables	
Summary of Taught Modules	12
Examinations and Coursework Structure	13
Timetables (Michaelmas, Lent and Easter)	14
Induction	17
Skills workshops and industrial visits	19
Module specifications	
3P1: Materials into Products	28
3P2: Operation and Control of Production Machines and Systems	31
3P3: Product Design	34
3P4: Operations Management	41
3P5: Industrial Engineering	44
3P6: Organisational Behaviour	46
3P7: Managing Business and People	48
3P8: Financial and Management Accounting	53
3P9: Industrial Economics, Strategy and Governance	55
3P10: Contemporary Issues in Manufacturing.	58
Coursework specifications	
CAD/CAM Exercise	62
Production Game	64
Major Project	66
Major Project	
Summary of Taught Modules	12
Examinations and Coursework Structure	13
Timetables (Michaelmas, Lent and Easter)	14
Induction	17
Skills workshops and industrial visits	19
General information	
Overseas Research Project	
Judge Business School: Information and library services	68
Manufacturing Engineering Tripos IIa Page 3 of 68	

Guidance on referencing, collaboration and plagiarism	69
Student information on the use of Turnitin	71

MET IIa People

3P4 Operations Management (Lent)

Ajith Parlikad (module leader)

Feryal Erhun

3P5 Industrial Engineering (Lent)

Ken Platts (module leader)

Feryal Erhun

3P6 Organisational Behaviour (Mich)

Rene Wiedner (module leader)

3P7 Managing Business and People (Lent)

Ajith Parlikad (module leader)

Tim Minshall

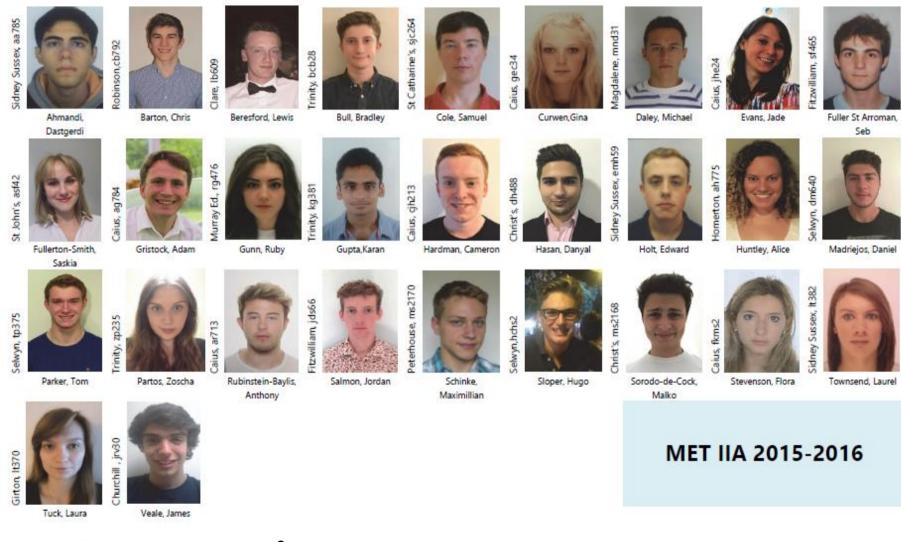
3P8 Financial and Management Accounting (Mich)

And

3P9 Industrial Economics, Strategy and Governance (Lent)

3P10 Contemporary Issues in Manufacturing (Mich)

Chander Velu (module leader)



Manufacturing Engineering Tripos IIa

Page 7 of 68

	Ronan Daly (module leader)	Claire Barlow	
Major Project		6	
	James Moultrie	Michaël De Volder	Chander Velu
IT Support			
	Lewis Grantham (Heads the IT team)	Giles Hainsworth (Senior Computing Technician)	
Workshop / Technical support			
	Alan Thorne (Technical officer)	Chris Jennings (Workshop technician, mechanical)	Simon Sennitt (Workshop technicial, electrical)
Others who you should know			
	Trina Holmes (Catering manager)	Ella Whellams (Events manager and supports the design show)	Sarah Fell (Senior Communicatoins Editor and supports the

2015-16 Year Group

Manufacturing Engineering Tripos IIa Pa

Page **9** of 68

Manufacturing Engineering Tripos IIa Page **10** of 68

Course overview and timetables

Summary of Taught Modules

Module number	Module Title	Module Scope	Assessment	Term
3P1	Materials into Products	From microstructure to mechanical property: manufacturing process optimisation for all classes of solids	100% Examination	Michaelmas
3P2	Production Machines and Systems	The specification, operation and management of production machines and systems	100% Examination	Michaelmas
3P3	Design	Integrating engineering and industrial design in the creation of new products.	100% Coursework	Michaelmas
3P4	Operations Management	The management of material and information flow in the supply chain	100% Examination	Lent
3P5	Industrial Engineering	The design of production flows and operations in manufacturing	100% Examination	Lent
3P6	Organisational Behaviour	An introduction to the theory of organisational behaviour	100% Examination	Michaelmas
3P7	Managing Business and People	An introduction to the processes involved in starting and running a business.	100% Examination	Lent
3P8	Financial and Management Accounting	An introduction to the principles and practice of financial and management accounting.	100% Examination	Michaelmas
3P9	Industrial Economics, Strategy and Governance	An introduction to the principles and practice of industrial economics, strategy and corporate governance.	100% Examination	Lent
3P10	Contemporary Issues in Manufacturing	 (a) Integrative industrial visits to study modern manufacturing practice. (b) Lectures to introduce current topics. 	100% Examination	Michaelmas

Examinations and Coursework Structure

		TOTAL	840
Visits	Coursework		40
Production Game	Coursework		30
CAD/CAM exercise	Coursework		30
Major Project	Coursework		140
3P3 Product Design	Single module assessed coursework		60
Paper 6	Single module paper: 90 minutes	Module 3P10, Contemporary Issues in Manufacturing	60
Paper 5	Double module paper: 3 hours	Module 3P8, Financial and Management Accounting Module 3P9, Industrial Economics, Strategy and Governance	120
Paper 4	Double module paper: 3 hours	Module 3P6, Organisational Behaviour Module 3P7, Managing Business and People	120
Paper 3	Double module paper: 3 hours	Module 3P4, Operations Management Module 3P5, Industrial Engineering	120
Paper 2	Single module paper: 90 minutes	Module 3P2, Production Machines and Systems	60
Paper 1	Single module paper: 90 minutes Common with 3C1	Module 3P1, Materials into Products	60
Name	Descriptor	Contents	Marks

weeks		9-10	10-11	11-12	12-1	1-2	2-3 3-4		4-5	5-6
0 05-Oct			Induction [0], Moultrie, IfM	•	•		Induction [0], Moultrie, IfM			
1 12-0ct				3P10: Contemp issues in	manuf. [1,3], BARLOW, IfM					
2 19-0ct		Workshop (6)		•		1				
3 26-0ct	Mondav			3P10: Contemp issues in	manuf. [1,3], BARLOW, IfM	1				
4 02-Nov	, Du					Lunch				
5 09-Nov	No N						3P6: Organisational behaviour [1-8], Wiedner			
6 16-Nov	-								P10: Contemp. issues in	
7 23-Nov				3P5: Industrial Engin	eering [6-8], PLATTS, IfM				nanuf. [5-8], DALY, <i>lfM</i>	
8 30-Nov					••••••••••••••••••••••••••••••••••••••			S	R3	
0 06-0ct		Induction [0]. Moultrie, IfM	Induction [0], Moultrie, IfM				Induction [0], Moultrie, IfM			
1 13-0ct		Industrial Visit: Tata Steel,				Lunch				
2 20-0ct		Visit debrief	Skills workshop: Process in	provement. Newton Consu	Itants	Lunch	Workshop (1)			
3 27-0ct	dav	Industrial Visit: Automotiv		iprovenienc, ne neon densa	lanto	Buildin				
4 03-Nov	2	Visit debrief	Skills workshop: Writing sk	ills for MFT		Lunch				
5 10-Nov		Industrial Visit: Aesrospac		1113 101 ML1		Lunch				
6 17-Nov		Visit debrief	Skills workshop: Creative to	amwork		Lunch				
7 24-Nov		Industrial Visit: Automotiv		aniwork		Lunch				
8 01-Dec		Visit debrief	Skills workshop: SMED Gan	20		Lunch				
0 07-Oct		Induction [0], Moultrie, IfM	Skills workshop. SMED Gail	IC		Lunch	Induction [0], Moultrie, IfM			
1 14-0ct		induction [0], Modiffic, IJM	Time available for			-	RP Worskops (group of 15)			
2 21-0ct	-	3P1: Materials into	d 16 -t d							
3 28-0ct	- 19	products [1-5],					Workshop (1) Workshop (3)			
	2	BARLOW/MCSHANE/SHER		2D0. Financial 6 mana		I	workshop (3)			
4 04-Nov 5 11-Nov	4	CLIFF, Engineering LR 4			gement accounting, [1-8], , IfM SR3	Lunch				
	N	SP1: Materiais into		VELU	, IJM SR3					
6 18-Nov 7 25-Nov	-	3r1: Materiais into								
		products [1-5],		-						
8 02-Dec		DADLOW/MCCHANE/CHED				-				
1 08-0ct		3P3 L1 Design process. <i>IfM</i> DS	3P3 L2 Prototyping	3P3 Workshop: Group des	sign exercise		Sketching (not compulsory)			
				3P3 L3 Machine Systems	3P3 Coursework #1					
2 15-0ct		3P3 Workshop: Design exe	rcise debrief	Design	Briefing		Introduction to Solidworks, THORNE, MOULTE	RIE, DE VOLI	DER, Design studio	
			3P3 L5 Actuators and							
3 22-0ct		3P3 L4 Mechanisms	bearings	3P3 L6 Engineering Drawi	ng and Tolerances		CAM, THORNE, Design studio, Turning			
	sdav					1				
4 29-0ct	ps.	3P3 L7 Unit costs	3P3 L8 Design for Assembly	3P3 Workshop: Design for	Assembly	Lunch	CAM, THORNE, Design studio, Turning			
						Lunch				
5 05-Nov	Th	3P3 L9 Design History	3P3 L10 Product Form	tet Form Major Project Briefing & team partnership agreement			3P3 Workshop: Design for 3D printing and Desi	ign for Injec	tion Moulding (not compuls	ory)
	_	3P3 L11 Physical	3P3 L12 Cognitive	3P3 Coursework #2	Major Project: Team	1				
6 12-Nov		Ergonomics	ergonomics	Briefing	partnership agreement		3P3 Workshop: Photoshop & photography (not	t compulsor	y)	
7 19-Nov		Major Project: Idea Fair	ergonomics	briening	partitership agreement	1				
8 26-Nov		Major Project: Idea Fair Major Project: project grou	n consultations			1				
9 03-Dec		Major Project: Project prop				1				
1 09-Oct	_		oou presentacions							
2 16-0ct	_						RP Worskops (group of 15)			
3 23-0ct	_	3P1: Materials processing					Workshop (2)			
4 30-0ct			/	3D2. Production ma	chines & systems [1-8],		Workshop (2) Workshop (4)			
4 30-0ct 5 06-Nov	Fridav	HUTCHINGS/ SHERCLIFF,	Time available for		O'NEILL, IfM	Lunch	Workshop (4) Workshop (5)			
6 13-Nov	1	Engineering LR 4	supervisions and self study	IIIOKNE/	O NEILL, IJM	Lunch	workshop (5)			
7 20-Nov		Lingineering Liv4								
7 20-Nov 8 27-Nov										
9 04-Dec			4			1				
9 104-Dec		L	L	1	1	1				

Michaelmas Timetable: Note, these timetables are provisional and are subject to change

Lent timetable: Note, these timetables are provisional and are subject to change

weeks		9-10 10-11	11-12	12-1	1-2	2-3	3-4	4-5	5-6
0 11-Jan									
1 18-Jan	1			F					
2 25-Jan		3P5: Ind 3P5: Ind 3P5: Ind		Engineering [1-3],					
3 01-Feb	Monday	4], PARLIKAD/ MINSHALL, IfM	PLA	ГТЅ, IfM					
4 08-Feb	nd	1, , , , ,	3P5: Industrial	Engineering [4-5],	Lunch				
5 15-Feb	10			UN, <i>IfM</i>					
6 22-Feb	~	_		,					
7 29-Feb									
8 07-Mar		_							
0 12-Jan									
1 19-Jan	-	Industrial Visit: scheduled all day but m	av finish oarlier dependi	na upon location					
2 26-Jan		Visit debrief	Skills workshop: A		Lunch				
3 02-Feb	ay	Industrial Visit: scheduled all day but m			Lunch				
4 09-Feb		Visit debrief	Skills workshop: E:		Lunch				
5 16-Feb	ne	Industrial Visit: scheduled all day but m	Jinis workshop. E.	a upon location	Lunch				
6 23-Feb		IIT/Arena Simulation	iy jinish eurner dependir	ig upon iocution	Lunch	Visit debrief			
7 01-Mar		Annual visits debrief (LT2)			LUNCH	visit debilei			
8 08-Mar		Annual visits debrief (L12)							
0 13-Jan									
1 20-Jan									
	Ň			3P4: Operation and Control of Production machines & systems, [1-4] O'NEILL [5-8]					
	da								
3 03-Feb 4 10-Feb	Wednesday				Lunch				
	dn	3P9: Industrial Economics [1-8], VELU IfM	machines & system						
5 17-Feb 6 24-Feb	Ve	IfM		RNE IfM					
	>								
7 02-Mar 8 09-Mar									
						M. D. J. J.C.			
1 14-Jan		Major Project: project group consultat				Major Project Superv			
2 21-Jan		Major Project: project group consultat	ons			Major Project Supervi	sions (1 hour per grou	<i>p</i>)	
3 28-Jan	ay	Major Project: Design review 1							
4 04-Feb	ps	Major Project: project group surgeries							
5 11-Feb	'n	Major Project: project group surgeries			Lunch				
6 18-Feb	L P	Major Project: Design review 1 Major Project: project group surgeries Major Project: project group surgeries Major Project: Design review 2 Major Project Surgervisions (1 hour per di						\$	
7 25-Feb	-	Major Project Supervisions (1 hour per g	oup)			Major Project Supervi	sions (1 hour per grou	<i>p)</i>	
8 03-Mar									
9 10-Mar			1						
1 15-Jan									
2 22-Jan		3P7: Managing Business and People	1-						
3 29-Jan		4], PARLIKAD/ MINSHALL, <i>IfM</i>							
4 05-Feb	Friday								
5 12-Feb	rid				Lunch				
6 19-Feb	E								
7 26-Feb						Production Game [7], IfM		
8 04-Mar									
9 11-Mar									

-	reeks		9-10	10-11	11-12	12-1	1-2	2-3	3-4	4-5	5-6
	18-Apr										
	25-Apr						Exam period				
	02-May	v									
	09-May	da									
	16-May	Monday		Major Project Period							
	23-May	Σ									
6 7	30-May 06-Jun										
	13-Jun										
	19-Apr						Exam period				
	26-Apr						Exam period				
		~					2.tamportoa				
	10-May	lay									
	17-May	esc					Major Project period				
5	24-May	Tuesday									
6	31-May								DESIGN SH	OW SET UP	
7	07-Jun										
	14-Jun										
	20-Apr						Exam period				
	27-Apr	~				1	Exam period				
	04-May	day		Major Project period				MET OP	PEN DAY		
	11-May	es					Maine Duciente animi				
	18-May 25-May	qn					Major Project period				
	01-Jun	Wednesday			MAIOR PR	OJECT FINAL PRESE	NTATIONS				DESIGN SHOW
	08-Jun	-									DESIGN SHOW
	15-Jun										
1	21-Apr				•		Exam period				
2	20 Amm						Exam period				
	05-May	Ŋ	Major Project Studio	Session, MOULTRIE,	DE VOLDER, IfM Desig DE VOLDER, IfM Desig DE VOLDER, IfM Desig D BUSINESS PLAN	n Studio					
	12-May	sda	Major Project Studio	Session, MOULTRIE,	DE VOLDER, IfM Desig	n Studio			Major Project Period		
	19-May	nĽ	Major Project Studio	Session, MOULTRIE,	DE VOLDER, IfM Desig	n Studio			major rroject r crioù		
	26-May	Гh	HAND IN OF FINAL DE	ESIGN PORTFOLIO AND	D BUSINESS PLAN						
						DESIGN SHOW, IN	TERNAL VIEWING		DES	SIGN SHOW - TAKE DO	WN
	09-Jun										
	16-Jun 22-Apr						Exam period				
	22-Apr 29-Apr						Exam period				
							влит репои				
	13-May	Friday					Major Project Period				
5	20-May	rid									
	27-May	н									
	03-Jun										
	10-Jun								•	•	

Easter timetable: Note, these timetables are provisional and are subject to change

Induction

Aims

- **To provide information about the course** including: the content and structure of the taught modules; the opportunity presented by the course work to demonstrate an integrative approach; the process and administration of the 3P10 Company Visits; the methods of examination; timetable and locations.
- **To ensure operating procedures and administration are understood**: including the different ethos from Part1 Engineering; the role of the IfM teaching office; the use of Moodle for providing information and taught content; access to admin and teaching staff; layout of the Alan Reece Building and the use of its facilities.
- **To start the skills development programme.** The induction programme includes sessions on communications, including presentation skills which are required early in the course. The remainder of the skills development programme takes place on alternate Tuesdays during Michaelmas and Lent terms.
- **To facilitate the group bonding** which is essential for the successful operation of the course. Students will meet academic and teaching staff, and the style of the course will be interactive with taught inputs interspersed with small group activities.
- **To provide a brief introduction to Manufacturing** to emphasise the integrated nature of Manufacturing and to explain the importance of retaining this perspective even though the subject is deconstructed into modules for the purposes of teaching.

Teaching style

To meet these aims the induction programme will necessarily contain taught input but will include substantial periods of interactive learning through group work and exercises.

Location

The induction programme is based in the Alan Reece Building.

Induction programme

Mon 5th October

	Introductions	
10:00 - 10:30	Welcome and overview of induction programme	JM
	Discussion: your hopes from MET	
10:30 - 10:45	Welcome from Professor Andy Neely	AN
10:45 - 11:30	Course overview and administration	JM
11:30 – 11:45	Break	
11:45 – 12:45	Safety and workshop introduction	AT
12:45 - 13:00	Facilities tours	SS/CJ
13:00 - 14:00	Buffet lunch with MET and Staff	ALL
14:00 - 15:00	Manufacturing awareness	СҮВ
15:00 - 16:00	Company visits: : aims, visits process, themes and topics, assessment, safety	RD
	Introduction to tablets	
Tues 6 th October		
09:30 - 10:00	Careers talk	Peter Harding, Careers Service
09:30 - 10:00 10:15 - 11:15	Careers talk Coffee shop: Introduction and theory	•
10:15 - 11:15		Careers Service McKinsey
	Coffee shop: Introduction and theory	Careers Service
10:15 - 11:15	Coffee shop: Introduction and theory Coffee shop: data collection	Careers Service McKinsey
10:15 – 11:15 11:15 – 13:00	Coffee shop: Introduction and theory Coffee shop: data collection Lunch: Own arrangements	Careers Service McKinsey McKinsey
10:15 - 11:15 11:15 - 13:00 13:00 - 14:00	Coffee shop: Introduction and theory Coffee shop: data collection Lunch: Own arrangements Coffee shop: Reporting	Careers Service McKinsey McKinsey McKinsey
10:15 - 11:15 11:15 - 13:00 13:00 - 14:00	Coffee shop: Introduction and theoryCoffee shop: data collectionLunch: Own arrangementsCoffee shop: ReportingInformal discussions/coffee with McKinesy	Careers Service McKinsey McKinsey McKinsey
10:15 - 11:15 11:15 - 13:00 13:00 - 14:00 14:00-14:30	Coffee shop: Introduction and theoryCoffee shop: data collectionLunch: Own arrangementsCoffee shop: ReportingInformal discussions/coffee with McKinesyBreakCommunications 1: prepare pecha-kucha style presentations	Careers Service McKinsey McKinsey McKinsey McKinsey
10:15 - 11:15 11:15 - 13:00 13:00 - 14:00 14:00-14:30 14:30 - 15:30	Coffee shop: Introduction and theoryCoffee shop: data collectionLunch: Own arrangementsCoffee shop: ReportingInformal discussions/coffee with McKinesyBreakCommunications 1: prepare pecha-kucha style presentations	Careers Service McKinsey McKinsey McKinsey McKinsey
10:15 - 11:15 11:15 - 13:00 13:00 - 14:00 14:00-14:30 14:30 - 15:30 Wed 7 th October	Coffee shop: Introduction and theoryCoffee shop: data collectionLunch: Own arrangementsCoffee shop: ReportingInformal discussions/coffee with McKinesyBreakCommunications 1: prepare pecha-kucha style presentations	Careers Service McKinsey McKinsey McKinsey McKinsey JM
10:15 - 11:15 $11:15 - 13:00$ $13:00 - 14:00$ $14:00-14:30$ $14:30 - 15:30$ Wed 7 th October 0900 - 10:00	Coffee shop: Introduction and theory Coffee shop: data collection Lunch: Own arrangements Coffee shop: Reporting <i>Informal discussions/coffee with McKinesy</i> <i>Break</i> Communications 1: prepare pecha-kucha style presentations Pecha-kucha presentation preparation	Careers Service McKinsey McKinsey McKinsey JM
$10:15 - 11:15$ $11:15 - 13:00$ $13:00 - 14:00$ $14:00-14:30$ $14:30 - 15:30$ $Wed 7^{th} October$ $0900 - 10:00$ $10:00 - 11:15$	Coffee shop: Introduction and theory Coffee shop: data collection Lunch: Own arrangements Coffee shop: Reporting Informal discussions/coffee with McKinesy Break Communications 1: prepare pecha-kucha style presentations Pecha-kucha presentation preparation Pecha-kucha presentations	Careers Service McKinsey McKinsey McKinsey JM

Skills Workshops and Industrial Visits

Programme

The skills development workshops are delivered during the Michaelmas term to allow maximum opportunity for practicing the skills as the course progresses.

The workshops start in the Induction programme and thereafter normally follow the debriefing sessions arranged as part of the Company Visits programme.

Industrial visits: Briefing and Debriefing

Each visit day addresses a different business sector. All students therefore make six visits, one for each business sector.

Each visit group is divided into teams of three with each team focusing on a different generic theme during the visit. The themes will be rotated between the teams so that each team focuses on a different theme for each visit (see table below). One team will be responsible for collating the input from all the teams in their group to make the debrief presentation. This responsibility will also be rotated between the teams.

The following approach is suggested:

- i. Teams collect information on their theme during the visit.
- ii. Teams structure their information and feed to the presenter team. This should be started on the return coach trip while the details are still fresh. Summary power point slides should be given to the presenter team by the Thursday following the visit.
- iii. The presenter team prepares a 30 minute power point presentation incorporating information from all the teams. The presentation should be structured and edited to ensure an integrated overview of the company.
- The formal debrief normally takes place on the Tuesday following the visit.
 Students from both visit groups come together, with their visit supervisors and the member of staff responsible for the visits programme.
- v. For the debrief process the first visit group make their presentation, followed by discussion and questions, principally from the other group. All members of the first group will be encouraged to participate in the discussion. The process is repeated for the second visit group. There is a round up discussion about each of the themes in turn, drawing out comparisons and differences between the companies.
- vi. During the discussions the presenters annotate their power point slides with comments from the discussion. The annotated slides are made available to all students on Moodle for reference and revision.
- vii. At the end of the year, there is a review of the visits, addressing each theme in turn and identifying lessons to be learned. The process is as follows:
 - a. Brief introduction to explain the process
 - b. Students allocated to generic theme groups approximately 6 per group.
 - c. Theme group discussions to review material from all visits, to identify learnings, and to prepare a presentation up to 2 hours.

d. Presentation from each theme group followed by discussion. Presenters annotate their slides to record the discussion.

Expenses

If you will be out of Cambridge over lunchtime, then either the company will provide lunch, or MET will make a contribution towards the cost of meal purchased by students. In this case students will be told explicitly that they may claim for lunch on that day. The maximum amount which may be claimed for lunch is £2.90. This is reckoned on the basis of the difference between the cost of a College meal and the cost of a meal on the open market; it is not expected to cover the full cost of a meal. Claims should be made on expenses forms which are available from the MET Office. Expenses can only be claimed against receipts.

Dress Code

When visiting companies you are representing Cambridge University and the Institute for Manufacturing, and you are expected to maintain the high standards for which we are known. You should always behave in a responsible and professional manner, and you should be smartly turned-out and appropriately dressed. Men should normally wear jacket and tie; a suit can be the easy option. You should always wear sensible shoes and **not** trainers on factory visits (no high heels or sandals). Other requirements, including the use of photography, may be specified by the company and must be adhered to

Visit group 1 names	Visit group 2 Names	Primary processes	Aerospace	Automotive	Electro- mech	Electronics	FMCG
Team 1A	Team 2A	Materials Prod process	Ops Mgt	Industrial Eng	Design Mgt	HR	CSR
Team 1B	Team 2B	Ops Mgt	Industrial Eng	Design Mgt	HR	CSR	Materials Prod Process
Team 1C	Team 2C	Industrial Eng	Design Mgt	HR	CSR	Materials Prod process	Ops Mgt
Team 1D	Team 2D	Design Mgt	HR	CSR	Materials Prod process	Ops Mgt	Industrial Eng
Team 1E	Team 2E	HR	CSR	Materials Prod process	Ops Mgt	Industrial Eng	Design Mgt
Team 1F	Team 2F	CSR	Materials Prod process	Ops mgt	Industrial Eng	Design Mgt	HR

Company visits schematic

Visit themes

Theme	Details
	• <i>History</i> - how has the industry developed: what technical and structural changes have occurred.
Industry level context	 Markets - where are the major markets – how is this forecast to change; what are the current market conditions; what are the major trends affecting the industry.
Company level context	 Competition - who are the major players; what market shares. History - what is the history of the company; has the ownership structure changed; is there a specific culture, ethos, or set of values. Scale - key metrics for this site - turnover, employees, products Structure - how is the company structured; how does it fit into the whole organisation. Market - where does the company position itself in the market; who is the competition; who are the customers; where are they. Products - what is the range of products - to what extent are products customised
	 Strategy - what is the business model – how does the company make money; how does the company compete – price, quality delivery, responsiveness, others; what is the impact of low cost economies.
	• <i>Materials</i> - what range of materials is used – why; where are they sourced.
Materials, production processes and	• <i>Production processes</i> - what production processes are employed; are there any areas of special expertise; which processes are outsourced – why and where to; what level of automation is in evidence – are there further opportunities; is the operation labour intensive or capital intensive.
technology	 Technology - how does the company stay abreast of technical developments; how is new equipment selected and justified.
	 How many product variants are there – how does uncertainty affect the business and manufacturing operations
Operations	 What are the key challenges in matching supply and demand
Mgt -	 What is the typical time from order to delivery.
organisation	 How is production configured - cell, line, functional etc – why.
and control	 What cost reduction techniques are used.
	How are lean processes applied.
	What are the systems for controlling production flow e.g. MRP, JIT, Kanban etc
Industrial engineering	 Industrial engineering - how are work study methods applied; how is work place layout determined; how are task times determined; what performance measures are used.
and quality	 Quality - what quality control systems are in place; are statistical approaches in evidence; what continuous improvement techniques are used e.g. quality circles, kaizan projects, suggestion schemes
	How is the brand positioned in the market?
Design management	• What is the customer journey: what are the range of 'touch points' (e.g. web, brochures, people, stores, telephone calls etc.) that define the customers interface with the company. How are these designed and who is responsible for ensuring consistency?

	What is the company's design strategy?
	 How are industrial and engineering design linked?
Human Resources	 <i>Recruitment and training</i> - how are employees recruited and trained; what are the critical skills; how are they developed; how are they forecast to change. <i>Remuneration</i> - what pay systems are in place – e.g. piece work, salary, bonus; what non pay reward systems are in place.
	• <i>Employee relations</i> - are any unions recognised; what structures are in place to work with them; how are communications with employees handled.
	 H&S – what is the company's safety record; how is safety managed.
Corporate social responsibility, H&S,	• <i>Environment</i> - why is the operation based in this locality – what advantages, disadvantages; what is the impact of the operation on the local environment and community; what measures are in place to reduce any negative impact; in what ways does the company engage with the community.
environment and sustainability	 Sustainability - what regulations impinge on the business – are they getting tougher; are alternative technologies being developed to reduce the environmental impact – are there cost implications; how are sustainability issues affecting the business – markets, products, operations.

Skills workshops

The skills workshops are designed to develop some of the personal skills critical for success in industry and related employment. The skills are introduced in the workshop series and are practiced and developed during the two years of the MET programme.

The skills considered in the workshop series are:

- **Communication & presentation skills**: the essential principles underlying all successful communication, stressing particularly the importance of structure, clarity and logical development and substantiation of the argument. This topic is introduced during the Induction Programme, and the early practical focus is on making presentations linked to the induction visits
- Writing skills: these are essential both in exams and detailed reports that require you to present a broad set of ideas in a coherent, evidence-based structure. A workshop and discussion will develop the skills, which will be of use throughout your career.
- Process improvement skills: bringing improvements to manufacturing processes form a fundamental part of the skillset that any manufacturing engineer must possess. These sessions focus on using structured approaches to understand a manufacturing process and to improve its performance.
- **Working in Teams**: this session focuses on understanding and identifying the different skills, personalities and motivations which individuals bring to a team, and the ways in which they can be harnessed to optimum effect.
- Artefacts workshop: exploring how different components are manufactured
- JIT Game: a game to help understand the principles of Just in Time.
- Arena simulation: discrete event process simulation
- **Examination skills:** giving guidance on examinations and examination preparation skills. This session is optional

Manufacturing Engineering Tripos IIa Page 22 of 68

Michaelmas workshops and visits programme

The class will be split into two groups, 1 and 2, and companies will be informed of those attending. If a particular student needs to change a scheduled visit, please inform the MET office.

NOTE: Please check email and MOODLE for any changes to the schedule

All debrief and workshop sessions will be held at the IfM, Alan Reece Building

Date	Activity	Leader	
Tue 13 th October	Primary Process Visit :		
The 13 October	All: Tata Steel, Scunthorpe	F. Tietze	
	09.00 – 10.45 Visit debrief	F. Tietze, R. Daly	
Tue 20 th October	10:00-13:00 Workshop – Process improvement	Jonathan Pemberthy, Julia Clarke (Newton Consultants)	
	Automotive Visit :		
Tue 27 th October	Group 1: Jaguar Land Rover	A. Thorne	
	Group 2: FREE		
	09.00 – 10.45 Visit debrief	A. Thorne, R. Srinivasan	
Tue 3 rd November	10:00-12:00 Workshop: Writing skills for MET	Anthony Haynes	
T 4 oth	Aerospace Visits:		
Tue 10 th November	Gp1: Rolls Royce, Derby	V. Martinez	
	Gp 2: Marshall, Cambridge	W. O'Neill	
Tue 17 th	09.00 – 10.45 debrief Aerospace visits	V. Martinez, W. O'Neill	
November	11.00 – 13.00 Creative Teamwork	Chris Legge (OE Cam LLP)	
T o ath	Automotive Visit:		
Tue 24 th November	Group 1: FREE		
	Group 2: McLaren, Woking	R. Srinivasan	
Tue 1 st December	09:00-10:45 Visit Debrief	R. Srinivasan, A. Thorne	
	11:00-13:00 SMED Game	McKinsey	

Provisional Lent workshops and visits programme (to be confirmed)

The class will be split into two groups, 1 and 2, and companies will be informed of those attending. If a particular student needs to change a scheduled visit, please inform the MET office.

NOTE: Please check email and MOODLE for any changes to the schedule

All debrief and workshop sessions will be held at the IfM, Alan Reece Building

Date Activity		Leader	
Tue 19 th January	Electronics visits:		
2016	Gp1: SMS Electronics, Nottingham	M.De Volder	
	Gp2: Nemco, Stevenage	C. Velu	
Tue 26 th January	0900 – 10:45 Debrief electronics visits	MDV, CV	
2016	1100 - 1230 Artefacts workshop	l Hutchings, C. Barlow	
Tue 2 nd February	Electro-Mechanical visits		
2016	Gp1: MK Electric, Southend	D. McFarlane	
	Gp2: SMC, Milton Keynes	T. Minshall	
Tue 9 th February 2016	0900 – 10:45 Debrief electro-Mechanical sector visits	DCM, TM	
	11:00-12:00 Examination skills	C. Barlow	
Tue 16 th February	FMCG Visits		
2016	Gp1: Hain Daniels, Histon	J. Moultrie	
	Gp2: Mars, Slough	F. Tietze	
Tue 23 rd February	09:00 – 13:00 JIT Game/Arena Simulation	AKNP, GDMF	
2016	14:00 – 16:00 Debrief FMCG Sector	FT, JM	
Tue 1 st March 2016	09:00 – 13:00 Annual Visits Debrief (LT2)	All leaders, AKNP	
Tue 8 th March FREE 2016			

Module Specifications

Note: PART IIA BOOKLIST

The Library Shelfmark indicates where these works can be found in the Library.

An additional copy of books marked with a star (*) will be available in a Special Part II Reference Collection kept in the Library; the attention of Directors of Studies (for College Librarians) will be drawn to these titles.

3P1: Materials into products

Module summary	From microstructure to final properties: manufacturing process optimisation for all classes of materials.	
Taught by	Dr C Barlow (Module leader), Dr G McShane, Dr H Shercliff	
Supporting activities	Artefacts workshops	
Assessment	100% by examination. Paper 1, single module paper common with Engineering Part IIA 3C1	
Supervision	Three supervisions, in groups of 3-4	

Module Learning Outcomes

By the end of the course, students should:

- Have a broad appreciation of the different materials processing methods used for metals, ceramics and polymers.
- Understand the main interactions between process and material in design and process selection, for each of the main classes of material.
- Understand the factors which control the microstructure of shaped castings, and their consequences for final properties and design of castings.
- Know the main classes of polymers and composites, and understand the processing and design considerations in selecting these for a given component.
- Know the main deformation processes for wrought alloys, and be able to conduct simple analysis of plastic deformation.
- Know the microstructural characteristics of wrought alloys, and the reasons for alloying and heat treatment, with examples from Al alloys and steels.
- Understand hardenability of steels, using CCT diagrams to select steels and heat treatments for a given component specification.
- Understand the processes and issues in the manufacture of powder metallurgy and ceramic products.
- Understand the importance of surface treatments and joining technologies, and know the main factors to consider in process selection.
- Be able to apply their knowledge of materials processing, microstructure evolution, and the mechanisms of material degradation to analyse and predict failures and to improve product design.

Lecture	Syllabus	On completion students should be able to
1 Introduction and Process Selection	Classification of manufacturing processes.	Take a structured approach to choosing material-process combinations for making components
FIOLESS SElection	Review of material and process selection.	
	Coupled problems in design and manufacturing: the interaction between material, process and design parameters.	
2 - 6 Deformation Processing of	Wrought alloy processing and microstructure evolution.	Select and optimise casting alloy and process to achieve required physical and mechanical properties for a
Wrought Alloys, Heat treatment.	Simple modelling of plastic forming processes (stress analysis, and upper bound method).	component. Calculate processing stresses for shaping processes involving plastic
	Application to rolling, forging, extrusion, machining of metals; case studies.	deformation of metals. Predict steel microstructure and
	Revision of phase transformations and TTT diagrams.	mechanical properties following a known thermo-mechanical treatment
	CCT diagrams and hardenability for steels.	
7 – 8	Examples paper 1	Coloct and antimica capting allow and
V – 8 Metal Casting	Ingot and shaped casting technology. Revision of phase diagrams and transformations applied to solidification: segregation,	Select and optimise casting alloy and process to achieve required physical and mechanical properties for a component.
	constitutional supercooling, casting alloys and microstructures. Casting defects and design of shaped	Calculate processing stresses for shaping processes involving plastic deformation of metals.
	castings.	
9 - 10 Processing of Polymers and	Polymer and composite processing technology.	Select and optimise polymer and process to achieve required physical and mechanical properties for a
Composites	Design, material and process	component.
	selection for polymers and composites.	Select and optimise polymer matrix, reinforcement and manufacture process to achieve required physical
	Examples paper 2	and mechanical properties

11 – 13	Sintering, HIPing and other	Select and optimise powder routes for	
Powder Processing,	processing technologies for powder	component manufacture.	
Welding and Joining, Surface	metals and ceramics.	Make informed decisions about choice of powder route versus conventional	
Engineering	Surface engineering processes and	processing for metals and ceramics	
	their applications	Make recommendations for suitability of joining technologies for different materials and applications.	
	Welding technology: fusion, friction,	Select surface treatments to achieve	
	laser, ultrasonic.	required physical and mechanical	
	Other joining processes: diffusion bonding, brazing, soldering, adhesives.	properties; make recommendations fo when such treatments are appropriate	
14 - 16	Processing as the origin of defects	Identify likely sources of failure for	
Design against Failure.	and failures (microstructure, damage, residual stress).	components made from all classes of materials.	
	Environmental factors in failure of materials.	Propose ways in which such failures can be avoided	
	Analysis and case studies of failures.		
	Examples paper 3		

Reading List

*ASHBY, M.F.	MATERIALS SELECTION IN MECHANICAL DESIGN Butterworth- Heinemann 4th edition 2010, 3rd edition available as an ebook at:	
	http://www.myilibrary.com?id=75447	
*ASHBY, M.F. & JONES, D.R.H.	ENGINEERING MATERIALS 2 Butterworth-Heinemann 3rd edition 2006 (mainly revision) Available as an ebook at: http://www.myilibrary.com?id=75451	JA 191
ASHBY, M., SHERCLIFF, H. & CEBON, D.	MATERIALS: ENGINEERING, SCIENCE, PROCESSING AND DESIGN Butterworth-Heinemann 2nd edition 2010 Butterworth- Heinemann 1st ed 20072nd edition available as an ebooks at;	1 st ed at JA.199
D.	https://www.dawsonera.com/guard/protected/dawson.jsp?name	JA.209
	=https://shib.raven.cam.ac.uk/shibboleth&dest=http://www.daw sonera.com/depp/reader/protected/external/AbstractView/S978 00809615521st edition available as an ebook at: http://www.myilibrary.com/?id=96251	
CALLADINE, C.R.	PLASTICITY FOR ENGINEERS Ellis Horwood 1985	FA 127
*CAMPBELL, J.	CASTINGS Butterworth-Heinemann 1991 = Author's Castings principles, 2nd ed available as an ebook at:	JO 41
	https://www.dawsonera.com/guard/protected/dawson.jsp?name =https://	
	shib.raven.cam.ac.uk/shibboleth&dest=http://www.dawsonera.co	

	m/depp/reader/protected/external/AbstractView/S97800804884 48	
*EDWARDS, L. & ENDEAN, M.	MANUFACTURING WITH MATERIALS Open University 1990	JA 146
JONES <i>,</i> D.R.H.	ENGINEERING MATERIALS III Pergamon 1993	JJ 308
*KALPAKJIA N, S. & SCHMID, S.R.	MANUFACTURING PROCESSES FOR ENGINEERING MATERIALS Pearson/Prentice Hall 5th edition SI units 2008	JN 67
LLEWELLYN, D.T. & HUDD, R.C.	STEELS: METALLURGY & APPLICATIONS Butterworth-Heinemann 3rd edition 1998	JD 64
MILLS, N.J.	PLASTICS Butterworth Heinemann 3rd edition 2005 Available as e-book at http://www.myilibrary.com/?id=101358	JG 216
*POLMEAR,	LIGHT ALLOYS Butterworth-Heinemann 4th edition 2006	JB 73
I.	Available as an ebook at: https://www.dawsonera.com/guard/protected/dawson.jsp?name =https://	
	shib.raven.cam.ac.uk/shibboleth&dest=http://www.dawsonera.co m/depp/reader/protected/external/AbstractView/S97800804961 08	
ROWE, G.W.	ELEMENTS OF METAL WORKING THEORY Arnold 1979	JN 39
STRONG, A.B.	PLASTICS – MATERIALS AND PROCESSING Pearson Prentice Hall 3rd edition 2006	JG 219
WATERS, T.F.	FUNDAMENTALS OF MANUFACTURING FOR ENGINEERS UCL Press 1996	BN 204

3P2: Operation and Control of Production Machines and Systems

Module summary	The specification, operation and management of production machines and systems	
Taught by	Prof W O'Neill (Module leader), A J Thorne	
Assessment	100% by examination. Paper 2 - single module paper.	
Supervision	The course will be supported by two examples papers, for each of which one supervision will be arranged.	

Module Learning Outcomes

On completion of the module students should be able to:

- 1. Know the operational aspects of the main categories of machining processes
- 2. Understand the types of interaction between components and process tooling
- 3. Understand the factors that affect the accuracy and precision of machining and grinding operations
- 4. Understand the various control strategies used to mitigate the sources of error in machining processes
- 5. Understand the issues in cell-level control and be able to model cell operations using Petri Nets and Ladder Logic
- 6. Know the means by which machining cells are integrated into factory wide operations

Lecture	Syllabus	On completion students should be able to
1 Introducti on to machine tools	History and development of machine tools. Concept and definition of machining and machine tools. Classification and specification of machine tools. Basic constructional features, advanced system designs.	 Know the history of machine tool developments. Know elements of machine tool design and their configurations. Know the manufacturing and operational capabilities. Know the applications domain and range of materials processed by modern machine tools.
2-3 Machining 1	Tool geometry, mechanism of chip formation, mechanics of machining, cutting temperature: causes, effects, estimation, measurement and control. Operations of single and multi-point tooling. Classification of machining processes. Basic machining operations - turning, shaping, planing, drilling, milling processes	Understand the basic physics of cutting- tool/material interactions. Understand the influence that parametric variables have on cutting performance (tool tip condition, cutting fluid flow, temperature, force, feed etc). Know the range of cutting tool materials and cutting tip geometries. Know the range of machining methodologies employed in modern machining operations.
4-5 Machining 2	Failure modes, wear mechanisms, and life of cutting tools. Cutting tool materials, influence of geometrical, process and cutting fluid parameters on machinability and surface roughness	Know the conditions necessary to deliver accurate machining processes. Understand the causes of wear and process strategies to reduce it. Know the techniques applied to characterize machining performance, roughness classifications and measurement techniques. Understand the principles behind Taylor's tool life equation and be able to apply it to make informed decisions on tool choice for a range of materials
6 Grinding	Grinding wheel design and operation, advanced techniques and technologies for high precision grinding. Economy of machining and grinding.	Understand the physics of grinding interactions and the elements of the processes that deliver controlled material removal. Know the variety of grinding wheel designs, their capabilities and applications

Syllabus: Operation of Production Machines

7 - 8 Process variability	Factors affecting the accuracy and precision of processes, static and dynamic effects, sources of uncertainties: inputs, process interactions, process degradation. Response to uncertainties: design of production equipment and tooling, online inspection, corrective processes.	Understand the factors that affect the accuracy and precision of machining and grinding operations. Know the sources of variation in machining and grinding. Know how to measure and minimize process variation using statistical processing techniques. Understand the various strategies used to mitigate the sources of error in machining processes
---------------------------------	--	--

Lecture	Syllabus	On completion students should be able to
9 – 10 Machine automation and control	Issues in automation of machines, CNC control, Open loop and closed-loop control of m/c tools, adaptive control, sensing and actuation, robotic control	Discuss the benefits and downsides of automation Design a feedback control loop to compensate for machine tool deflection during operation Describe how sensing and actuation is achieved to implement control Describe how machine tools are automated Articulate challenges in robotic control
11 – 12 Cell Control Using PLC Programming	Issues in cell-level control, Programmable Logic Controllers, Ladder Logic Diagrams, modeling of cell operations using FSM,	Understand requirements for cell automation Develop Ladder Logic code to automate the operations of a manufacturing cell Learn how to develop Finite State Machine process representations Use Finite State Machines to develop Ladder Logic Code
13 – 14 Petri Net Based Automation Modelling and Control	Introduction to Petri- Nets, modeling of cell operations using petri nets, conversion of Petri Nets to Ladder Logic	Know the rationale for selecting different discreteevent models for automated systems Understand how to develop Petri Net models Develop a cell management scheme using a Petri Net approach Convert Petri Nets to equivalent Ladder Logic code
15-16 Reliability and Maintenance	Failure detection and prevention in machine tools, Reliability modeling, FMEA analysis, Condition- based Maintenance.	Discuss the basics of machine tool reliability, and explain the implications of the "bathtub curve". Explain various maintenance strategies, their advantages and disadvantages Explain the steps in Failure Mode and Effects Analysis

Syllabus: Control of Production Machines and Systems

Reading List: Operation of Production Machines

1, 2, 7, 1	Manufacturing Processes for Engineering Materials, PRENTICE HALL, Edition: 0005, August 2007 (ISBN10: 0132272717, ISBN13: 9780132272711)
Helmi A Youssef, &	Machining Technology, Taylor & Francis Ltd CRC Press Inc, 2008
Hassan El-Hofy	(ISBN10: 1420043390 , ISBN13: 9781420043396

Reading List: Control of Production Machines and Systems

*BOUCHER, T.O.	COMPUTING AUTOMATION IN MANUFACTURING: AN INTRODUCTION <u>Chapman & Hall</u> 1996
*KALPAKJIAN, S. & SCHMID, S.R.	MANUFACTURING ENGINEERING AND TECHNOLOGY <u>Prentice Hall 5th</u> edition 2004
BOLTON, W.	INSTRUMENTATION AND CONTROL SYSTEMS Newnes 2004
BOLTON, W.	PROGRAMMABLE LOGIC CONTROLLERS, <u>Newnes 4TH Edition</u> 2006

3P3: Product Design

Module summary	Integrating engineering and industrial design in the creation of new products
Taught by	Dr J Moultrie (Module leader), Dr M De Volder
Assessment	Two pieces of coursework, assessed by submission of individual design portfolios
Supervision	The lecture courses are supported by studio time with group supervision of projects.

Module Learning Outcomes

On completion of the module students should be able to:

- 1. Apply basic engineering principles to the design of products
- 2. Determine a product's architecture
- 3. Understand and apply dimensional tolerances to engineering drawings
- 4. Structure the estimation of unit cost analysis of a design
- 5. Understand and be able to apply basic ergonomic principles
- 6. Understand why products are designed as they are and be able to explore a product's form

Lecture	Syllabus	On completion students should be able to
1 The design process	Overview of the design process and product architecture	Understand the difference between a theoretical and real design processes. Understand how a product's architecture influences the change and variety
2 Prototyping & Evaluation	Types and roles of prototypes, simulations and models in design	Understand the importance of prototyping in the design process and the role of different types of prototype
3 Actuators and bearings	Introduction to different types of actuation principles and techniques to guide the generated motion	Understand that different types of actuators serve different needs. Understand the need for bearings, and be able to select the appropriate type of bearings in a design
4 Engineering Drawing and Tolerancing	Introduction to dimensional and geometric tolerances, basic drawing conventions, limits and fits, dimensioning assemblies	Produce and read engineering drawings Apply engineering tolerances
5 Mechanisms	Intoduction to linkages, cams and other mechanisms	Understanding of the opportunities and limitations of mechanisms.
6 Machine system design	Overview of good design practices used in machine and product design	Application and understanding of kinematic design, force loops, flexure hinges, etc

Syllabus

7 Unit cost analysis	Basic principles of estimating unit cost of a design	Be able to structure an analysis of a design's unit cost
8 Design for Assembly	Boothroyd & Dewhurst / Lucas Engineering DfA methods DfA Heuristics A structured approach to design for assembly	Apply the basic principles of design for manufacture/ assembly
9-10 Design history & product form	Key design movements, forms and technologies	Understand how designers create a product's form.
	Principles of creating product form	Apply basic principles to create a product's form
11-12 Physical & cognitive ergonomics	Physical interaction with products How we relate to and understand products	Apply basic principles of design for use

Workshop activities

To support the lecture course, there will be a number of supporting activities:

- 1. Group design exercise: to focus attention on prototyping and basic mechanical design.
- 2. Design Sketching: basic design skills development
- 3. Design for assembly exercise: to put theory into practice
- 4. Photography and Photoshop: basic design skills development
- 5. Design for 3D printing and injection moulding: consideration of basic design rules for these key production processes.

Reading List

*BAXTER, M.R.	PRODUCT DESIGN: A PRACTICAL GUIDE TO THE SYSTEMATIC METHODS OF NEW PRODUCTS DEVELOPMENT <u>Nelson Thornes</u> 1995 (2002 reprint)	AP 308
*ULRICH, K.T. & EPPINGER, S.D.	PRODUCT DESIGN AND DEVELOPMENT McGraw-Hill/Irwin 3rd edition 2004	BN 220
*NORMAN, D.A.	THE DESIGN OF EVERYDAY THINGS Basic Books 1988 (2002 reprint)	AP 313
OTTO, K. & WOOD, K.	PRODUCT DESIGN: TECHNIQUES IN REVERSE ENGINEERING AND NEW PRODUCT DEVELOPMENT <u>Prentice Hall</u> 2001	AP 309
PHEASANT, S.	BODY SPACE: ANTHROPOMETRY, ERGONOMICS AND THE DESIGN OF WORK <u>Taylor & Francis</u> 2nd edition 1996 (1999 reprint)	BJ 6
SLOCUM A H	PRECISION MACHINE DESIGN, 1991	AP 323
SCLATER N, & CHIRONIS N P	MECHANISMS AND MECHANICAL DEVICES SOURCEBOOK, <u>McGraw</u> <u>Hill</u> , 1996	RE 52

3P4: Operations Management

Module summary	The management of material and information flow in the supply chain
Taught by	Dr A Parlikad, (Module leader), Prof D McFarlane, Dr F Erhun
Supporting activities	Class Production Game to simulate the operation of a card-manufacturing company. Combined with 3P5
Assessment	100% by examination. Paper 3, double paper with 3P5
Supervision	The course will be supported by four examples papers, for each of which one supervision will be arranged

Module Learning Outcomes

On completion of the module students should be able to:

- 1. Understand the ways in which manufacturing processes are managed in order to achieve the right quality of product, manufactured to meet the customer requirements and delivered on time, and making the most efficient use of the resources available.
- 2. Understand the role of inventory in manufacturing systems, and apply basic ordering, replenishment, and forecasting techniques
- 3. Describe the major influences on the efficient flow of work through a factory, apply MRP techniques to scheduling, describe the implications of different co-ordination structures on job design, describe how improvement processes relate to co-ordination strategies
- 4. understand how manufacturing operations are integrated with other aspects of the business; how operations are managed across supply networks; and the role of different IT systems in supporting operations across the supply chain

Lecture	Syllabus	On completion students should be able to
1 - 2 Introduction	Course introduction, introduction to operations management, management levers, Volume vs Variety	Discuss the key issues in manufacturing and supply chain operations and the key levers available to managers to tackle them. Discuss the importance of the volume-variety choice in process design Describe how volume-variety choice affects the manufacturing system layout Describe how volume-variety choice affects the choice of automation systems
3 - 4 Forecasting	Moving average, exponential smoothing, regression, time series analysis	Calculate demand forecasts using different forecasting methods Discuss the appropriateness of different forecasting methods
5 - 6 Inventory management	EOQ, POQ Safety stock, other inventory models	Discuss the role of inventory in a production system Derive the expression for and calculate the Economic Order Quantity Discuss the concept of safety stock in inventory management
7 - 8 Scheduling	Line balancing, EDD, SPT, FIFO scheduling rules	Balance a production line Implement different production scheduling rules
9 - 10 Capacity Management	Capacity planning, Queuing Theory	Discuss reasons why actual capacity will be lower that theoretical and the levers that a manager can "pull" to improve capacity Discuss different options for a manager to cope with variations in demand and capacity Model a manufacturing operation as a queuing system and calculate key process parameters
11 – 12 Procurement	Materials Requirements Planning, JIT	Generate MRP records for a product and its components, given market demand and other proces parameters. Discuss the differences between "push" and "pull" manufacturing approaches
13 – 14 Logistics & transportation	Transportation model, warehousing and distribution, DRP	Solve simple transportation problems for allocating product flows between two supply chain locations Determine the optimal factory/warehouse location for a given demand distribution Generate DRP records for a product

Syllabus and Lecture Learning Outcomes

15 - 16 Enterprise & SC information	SC Dyn ERP/SC CPFR, \	M systems,	Discuss the implications of dynamics in supply chains Discuss the role of the Internet and IT in improving supply chain visibility
systems			Discuss various mechanisms used by organizations to coordinate product and information flows within a supply chain
Reading List			
CHAMBERS, S. & edition JOHNSTON. R. <u>newto</u>		edition (200 <u>newton.lib.c</u>	S MANAGEMENT <u>FT/Prentice Hall</u> 5th edition 2007 4th 4) available as e-book at: <u>http://ul-</u> <u>cam.ac.uk/cgi-bin/Pwebrecon.cgi?BBID=4508815</u> Click to MyiLibrary resource' for access
*FRENCH, S.		SEQUENCIN	G AND SCHEDULING <u>Ellis Horwood</u> 1982
*PINEDO, M. & (X.	CHAO,		S SCHEDULING WITH APPLICATIONS IN URING AND SERVICES <u>Irwin/McGraw-Hill 1</u> 999
*REMBOLD, U., B.O. & STORR, A		COMPUTER <u>Addison-We</u>	INTEGRATED MANUFACTURING AND ENGINEERING <u>slev</u> 1993
- , ,		MANUFACTURING PLANNING AND CONTROL FOR SUPPLY CHAIN MANAGEMENT <u>McGraw-Hill/Irwin</u> 5th edition 2005	
FOGARTY, D.W., BLACKSTONE, J.I HOFFMAN, T.R.			N AND INVENTORY MANAGEMENT <u>South-Western in</u> with APICS 2nd edition 1991
FUJIMOTO, T.			TION OF A MANUFACTURING SYSTEM AT TOYOTA. <u>ersity</u> Press 1999
GOLDRATT, E.M COX, J.	. &	THE GOAL: A edition 2004	A PROCESS OF ONGOING IMPROVEMENT <u>Gower</u> 3rd I
HOLWEG, M. & F.K.	PIL,	CHAIN THRO	O CENTURY: RECONNECTING CUSTOMER AND VALUE DUGH BUILD-TO-ORDER; MOVING BEYOND MASS AND JCTION IN THE AUTO INDUSTRY <u>MIT Press</u> 2004
LUSCOMBE, M.		MRPII: INTE	GRATING THE BUSINESS <u>Butterworth-Heinemann</u> 1993
MONDEN, Y.		TOYOTA PRO	DDUCTION SYSTEM Chapman & Hall 2nd edition 1994
OLIVER, N. & WILKINSON, B.			ZATION OF BRITISH INDUSTRY: NEW DEVELOPMENTS IN <u>Blackwell 1992</u>
PINEDO, M.		SCHEDULING 1995	G: THEORY, ALGORITHMS AND SYSTEMS Prentice Hall
SCHONBERGER, R.J. WORLD CLASS		WORLD CLA	SS MANUFACTURING <u>Free Press</u> 1986

SCHROEDER, R.G. OPERATIONS MANAGEMENT: DECISION MAKING IN THE OPERATIONS FUNCTION <u>McGraw-Hill</u> 4th edition 1993

WOMACK, J.P., JONESTHE MACHINE THAT CHANGED THE WORLD: THE TRIUMPH OF LEAND.T. & ROOS, D.PRODUCTION <u>Rawson Associates</u> 1990

3P5: Industrial Engineering

Module summary	The design of production flows and operations in manufacturing
Taught by	Dr K Platts (Module leader), Dr F Erhun
Supporting activities	The Production Game course work integrates material from 3P4 and 3P5
Assessment	100% by examination, consisting of 2 questions. Students will attempt all questions.
Supervision	The module is supported by 3 supervisions and 1 revision supervision

Syllabus and Lecture Learning Outcomes

Lecture	Syllabus	On completion students should be able to
1 Introduction	The role of Operations, strategy overview. Introduction to Industrial Engineering.	
2-4 Method Study	Select, Record, Examine, Develop, Define, Install, Maintain. Charting: Process, Activity, and Layout. Ergonomics, principles of Motion Economy. Job Design, use of the Human Body. Arrangement of the Workplace. Design of Tools and Equipment	Understand and be able to apply the traditional techniques of method study. Understand the factors that affect the ergonomic design of jobs, tools and equipment, and the workplace.
5-6 Method Study: new approaches	Lean production techniques: Toyota Production System, JIT, Maintenance TPM, 5S etc	Understand the principles of Lean production, and be able to relate these to traditional work study
7-10 Work Measurement:	The Need for Time Standards. Establishing Time Standards: Activity Sampling; Time Study; Rating; Learning Curves; Allowances; Basic time, Work Content, Standard time; Predetermined Time Standards: MTM-1, 2 and 3; Limiting Motions.	Apply relevant work study and lean production techniques to the design of production systems. Understand the roles of time standards in manufacturing. Know the different ways in which time standards can be determined and the advantages and disadvantages of each method. Understand the basic principles behind learning and be able to manipulate a simple learning model to predict the effect of learning on the cycle time of repetitive work

Process co	oject, jobbing, batch, line, ntinuous flow; Group chnology.	Understand the different types of process layout and the advantages and disadvantages of each.	
Plant Layout Wo and Materials Lay Handling Sys Dis Ha Fo	ctory, Department and orkplace layout; Systematic yout Planning, Computerised stems; Continuous and scontinuous Materials andling; Conveyors, Cranes, rklifts; Materials Handling	Appreciate the factors that affect the factory. Understand and be able to apply the used in planning factory layouts. Know the different methods of mater handling and be able to choose the ap method for a particular task.	techniques rials
Audit .3-16 Quality Assurance, Quality Understan Quality management systems, different a Inspection, Sampling plans, Understan SPC, TQM and 6 sigma, DMAIC. design and Design of Experiments Failure Understan		Understand the concept of quality an different attribute of quality Understand the role of inspection and design and apply sampling plans Understand process capability and be apply the techniques of statistical pro control.	d be able to e able to
Reading List			
*GROOVER, M.P.	WORK SYSTEMS AND THE N MANAGEMENT OF WORK <u>P</u>	/IETHODS, MEASUREMENT, AND rentice Hall 2007	BJ 7
*MUHLEMANN, A., OAKLAND, J. & LOCKYER, K	PRODUCTION AND OPERAT edition 1992	IONS MANAGEMENT <u>Pitman</u> 6th	BN 178
*BICHENO J. & HOLWEG M.	THE LEAN TOOLBOX, 4 th Edi	tion, <u>PICSIE Books,</u> 2009	
*WOMACK JP, JONES DT, ROOS D.	THE MACHINE THAT CHANGED THE WORLD, Rawson Associates, BM352 1990		
*IMAI M	KAIZEN, Random House, 1986		
DALE, B.G.	MANAGING QUALITY <u>Blackwell</u> 4th edition 2003 (2006 printing) Available as e-book at: <u>http://ul-newton.lib.cam.ac.uk/cgi-</u> <u>bin/Pwebrecon.cgi?BBID=4359599</u>		BA 307
HELANDER, M.	 A GUIDE TO THE ERGONOMICS OF MANUFACTURING, Taylor and Francis,1995 		
CHASE R, AQUILANO N.& JACOBS	PRODUCTION AND OPERAT Hill,1998	IONS MANAGEMENT,8 th Ed, McGraw	
SLACK, N., CHAMBERS, S. & JOHNSTON. R.	OPERATIONS MANAGEMENT FT/ <u>Prentice Hall</u> 5th edition 2007 BN250 4th edition (2004) available as e-book at: http://ul- newton.lib.cam.ac.uk/cgi-bin/Pwebrecon.cgi?BBID=4508815		BN250

3P6: Organisational Behaviour

Module summary	An introduction to theories of organisational behaviour
Taught by	Dr Rene Wiedner (Module leader)
Assessment	100% by examination. Paper 4, double module paper combined with 3P7
Supervision	There will be three supervisions on Organisational Behaviour in the Michaelmas term

Syllabus and Learning Outcomes

Lecture	Syllabus	On completion students should be able to
1-2 Introduction	Introducing <i>Organization</i> and <i>Organizations</i> Foundations of Organizational Behaviour Ethics and Corporate Social Responsibility	Understand some of the central issues in work organizations
3 Culture	Levels of Organizational Culture Organizational Socialization Perspectives on Culture National Cultures	Distinguish between Schein's three levels od organizational culture Distinguish the stages of organizational socialization Contrast managerial and social science perspectives on organizational culture Distinguish different dimensions of national culture
4 Learning and Personality	Behaviourist and Cognitive Approaches to Learning The Learning Organization Knowledge Management Types and Traits Personality Tests Stress Management	Explain the characeristics of the behaviourist and cognitive approaches to learning Describe features of the learning organization and knowledge management Distinguish between type, trait, and self theories of personality Identify strengths and limitations of formal methods of personality assessment Explain the relationship between personality and stress and identify stress management strategies
5	Verbal and Non-Verbal	Understand the main components

Communication	Communication	and barriers to effective
	Emotional Intelligence	interpersonal communication
	Organizational Communication	Be able to explain the concept of emotional intelligence and its practical significance
6 Perception	Perceptual Sets, Worlds and Assumptions	Identify the main features of the process of perception
	Perceptual Errors	Suggest techniques for improving perceptual accuracy and avoiding errors
7	Drives, Motives and	Understand the nature of motives
Motivation	Motivation	and motivation processes as
	Content and Process Theories	influences on behaviour
	Empowerment and Engagement	Use theories to identify motivational problems in organizations and recommend solutions
8 Groups	Definitions of Groups and Group Tasks	Distinguish between different types of group tasks
	Group Formation and Development	Outline theories of group formation and development
	Group Structures Social Identity Theory	List the six dimensions of group structure and Belbin's team roles
9	Social Compensation and	Distinguish the different directions in
Teamwork	Loafing	which individuals' behaviour can be
	Conformity and Obedience	modified by a group Understand how groups use norms
	Types of Teams Team Autonomy and Self- Managing Teams	to regulate the behaviour of their members
		List dimensions of team autonomy
10	Scientific Management	Describe the main objectives and
Work Design and Structure	Fordism and the Deskilling Debate	principles of the scientific management approach
	Organization Structuring	Understand the deskilling debate
		List the main elements of
		organization structure Explain how organization structure
		and behaviour are related to one another
		Distinguish between the formal and informal organization
11	Bureaucracy	State the main characteristics of a
Organization Design and Architecture	Strategic Choice vs Determinism	bureaucratic organization structure as specified by Max Weber
	Inter-Organizational	Identify the influence of early organization design ideas on

	Relationships	contemporary organizations
		Distinguish between an outsourcing relationship and hollow, modular, and virtual organization structures
12 Organizational	Timing Lewin's Forcefield Anaylsis	Identify the main types and triggers of organizational change
Change	Readiness and Resistance Unanticipated Consequences	Understand the typical characteristics of human responses to change Explain the issues that management must take into account when initiating and implementing change
13 Leadership	Leadership vs Management Leadership Theories Distributed Leadership	Understand why there is little relationship between personality traits and effective leadership
		Understand why effective leaders either adapt their style to fit the organizational and cultural context or find contexts which fir their personal style
		Explain contemporary trends in this field and critically evaluate the term leadership
14 Decision-Making	Theories of Decision-Making Decision Biases and Heuristics Problems with Group Decision-	Distinguish between different models of individual and organizational decision-making
	Making Organizational Decision- Making	List common decision biases Consider the advantages and disadvantages of group decision- making
15 Emotions and Conflict	Emotional Labour Contrasting Frames of Reference Conflict Management	Distinguish between the four major frames of reference on conflict List the causes of conflict in organizations Explain the conditions under which
		conflict is resolved and stimulated in organizations
16 Power and Politics	Theories of Power Organizational Politics	Appreciate the importance of power and politics in organizational life Compare and contrast different perspectives on power

Reading List

* HUCZYNSKI, ORGANIZATIONAL BEHAVIOUR, <u>Pearson</u>, 8th edition 2013. Several university departments and colleges have copies of this text. You can purchase it at a 20% discount via http://www.pearson-books.com/cam using the voucher code ZP031F. The sixth and seventh editions are also acceptable.

A list of additional readings for each topic will be made available online.

3P7: Managing Business and People

Module summary	An introduction to the processes involved in starting and running a business.
Taught by	Dr A Parlikad (Module leader), Dr T Minshall
Assessment	100% by examination. Double module paper combined with 3P6Organisational Behaviour.Students will be required to answer one question from Managing Business and one from Managing People.
Supervision	There will be two hours of supervisions.

Module Learning Outcomes

On completion of the module students should be able to:

- 1. Explain the core processes involved in starting and running a business
- 2. Demonstrate the importance of integrating management and business practices with the firm's strategic objectives
- 3. Evaluate HR practices and the importance of making the best use of people

Lecture	Syllabus	On completion students should be able to
1 Introduction	The key integrating frameworks for understanding a manufacturing business Module overview Key areas of activity of a manufacturing business External factors that influence a manufacturing business Frameworks to show linkages between internal and external activities of a manufacturing business	Describe and apply a framework for management of a manufacturing business and the context within which it operates
2 Entrepreneurship	Starting and growing a business The role of entrepreneurship in an economy Defining entrepreneurship: Resource-based versus opportunity based activities How a firm grows: Typical growth trajectories and common management challenges	Describe entrepreneurial activity and its place in the economy, and to outline the most significant challenges faced by those managing a young firm

Syllabus

3 Staying competitive	Guiding and managing an established business Managing steady state c.f. managing change Tools for planning Managing Innovation (product, process, business model, organisational, etc)	Explain the challenges faced in managing an established business, and some of the tools available to assist in planning and implementing change
4 Marketing	Identifying future business opportunities The business planning cycle Identifying customer needs and opportunity areas Designing business models to address new needs	Outline the marketing function and its contribution to the business
5 Sales	Accessing customers (PBH) The links between business models and routes to market The key tools and techniques for sales Integrating sales with other business activities	Describe the sales process, its role in the business, and a selection of key tools and techniques
6 Case study	Integrating example	Discuss how the principles covered in lectures 1 to 5 might be applied practice
7 Introduction to HRM	Managing people to deliver business objectives People as a resource The principles of HRM (and contrasts with earlier models) The application of HRM (Hard & Soft; integrated, devolved, outsourced) Strategic HRM	Describe the core principles of HRM and discuss its practical application
8 Recruitment and Selection	Establishing the need for recruitment; establishing processes to attract good employees to the organisation; and identifying the best mechanism for selection.	Understand the supply-side factors that influence recruitment and describe the main components of the employee recruitment process.
9 Performance management	Goals of performance measurement Performance appraisals Potential biases in appraisals Stack ranking 360 degree appraisals Appropriate employee compensation and different means of achieving it	Describe how employee performance is measured and managed

10 Nurturing talent	Models of learning Training/learning methods Segmenting talent Employee retention	Discuss the process of employee learning and different methods of training employees Describe how employee talent should be recognised and managed effectively to deliver value to the organisation
11 Change Management	Types of change in organisations Resistance to change and overcoming resistance Satir Model of change Kotter's 8 steps for successful change management	Discuss why change is an issue for organisations Describe the implications or change for the management of people
12 Legislation and regulation	Managing within the legal framework Employment law (hiring, firing, equal opportunities etc) Workplace legislation Employee participation and consultation	Describe the main features of the regulatory and legal framework for employmen
13 Dispute Resolution and Governance	Managing people within a framework Dispute resolution Governance and ethics in HRM (inc objective-subjective perspectives)	Outline the main features of the frameworks within which employees are managed, and explain modern approaches to dispute resolution.
14 International practices/Globalisa tion	Addressing diversity - Cultural and regulatory variations; Pan-national influences Universalist and contextualist paradigms Convergence and divergence Cultural and institutional explanations Variations in practice	Explain, with examples, how cultural and national norms influence the nature and practice of HRM
15 Current trends	including globalisation, new technology, demographics, flexible working, outsourcing (People management) Technology in HRM Dynamic organisations	Demonstrate awareness of current trends and developments in HRM and in the management of people
16 Review/Summary	Integrating people, management practices, and business strategy	Explain and illustrate how strategic, operations and human resource management practices interact in the process of starting and running a business

Reading List

*MOORE, G	CROSSING THE CHASM, New York: <u>Harper Business</u> 1991	
*MULLINS, J. W	THE NEW BUSINESS ROAD TEST: WHAT ENTREPRENEURS AND EXECUTIVES SHOULD DO BEFORE WRITING A BUSINESS PLAN. London, <u>FT Prentice Hall</u> . 2003	
*STOREY, J. (ed)	HUMAN RESOURCE MANAGEMENT: A CRITICAL TEXT Thomson Learning 3rd edition 2007	1844806154
*TIMMONS, J. A. & SPINELLI, S	NEW VENTURE CREATION: ENTREPRENEURSHIP FOR THE 21 ST CENTURY <u>McGraw-Hill</u> 8 th edition, 2008	0071276327
*BEARDWELL, J., & CLAYDON, T.	HUMAN RESOURCE MANAGEMENT: A CONTEMPORARY APPROACH <u>Financial Times/Prentice Hall 5</u> th edition 2007	0273707639
*LEGGE, K	HUMAN RESOURCE MANAGEMENT: RHETORICS AND REALITIES, <u>Palgrave Macmillan</u> , 2005	1403936005

3P8: Financial and Management Accounting

Module summary	An introduction to the principles and practice of financial & management accounting and finance
Taught by	Dr C Velu (Module leader)
Supporting activities	The module content is used in the production of business plans for the major project
Assessment	100% by examination, Paper 5 combined with 3P9 Economics of Industry and Strategy
Supervision	Four supervisions will be offered in support of this module.

Aims

The course is designed to situate management and shareholders' decision making in their financial context. The course aims to develop students' understanding of the financial processes affecting corporate life - in particular, their understanding of the factors impinging upon corporate decisions and of the financial aspects of organisations.

Syllabus: Financial Accounting

Lecture	Syllabus	On completion students should be able to
1-2	Overall framework of financial reporting	Understand the importance of financial accounting. Understand the principles, conventions and regulatory framework of financial accounting.
3-4	 The mechanics of accounting 	 Understand the principles of double entry bookkeeping.
	 Balance Sheet, Profit and Loss Account/Income 	 Understanding the principles of preparing of company financial statements such as the Profit and Loss Accounts and the Balance Sheet
5-6	Asset valuation methods, cash flow statements	Understand different methods of asset valuation and the purpose and creation of cash flow statements
7-8	Performance ratios	 Understand and be able to use firm performance ratios.
	 Analysing and interpreting financial statements 	 Be familiar with company reports and their analysis, be able to compare performance of firms.
	Creative accounting	 Awareness of creative accounting and possible management of earnings.

Syllabus: Management Accounting and Finance

Lecture	Syll	abus	On	completion students should be able to
9-10	٠	Cost concepts and cost behaviour	٠	Understand the classification of different costs
	٠	Product costing systems and	•	Understand and be able to apply different

activity based costing	costing methods and to apply different methods for dealing with overhead costs
Building a budget	 Understand budgeting methods and processes.
 Budgeting and variance analysis/cash flow management 	 Understand and be able to apply variance analysis, and manage the cash in a business.
Investment Appraisal	 Understanding the approaches to compare the financial viability of different projects payback method
	 capital budgeting decisions (opportunity cost of capital, investment rules such as net present value and real options)
	 time value of money and risk versus return;
Einancing decisions	financing decisions (debt versus equity).Understand financing decisions (debt versus
	 Building a budget Budgeting and variance analysis/cash flow management

Reading List

ATRILL, P. & McLANEY, E.J.	ACCOUNTING AND FINANCE FOR NON-SPECIALISTS <u>FT/Prentice Hall</u> 9th edition 2014
ATRILL, P. & McLANEY, E.J.	FINANCIAL ACCOUNTING FOR DECISION MAKERS <u>FT/Prentice Hall</u> 7th edition 2013
ATRILL, P. & McLANEY, E.J.	MANAGEMENT ACCOUNTING FOR DECISION MAKERS <u>Prentice Hall</u> 7th edition 2012
BARKER, R.	SHORT INTRODUCTION TO ACCOUTING, Cambridge University Press, 2011
ATKINSON, A.A., et al.	MANAGEMENT ACCOUNTING: INFORMATION FOR DECISION MAKERS AND STRATEGY EXECUTION <u>Prentice Hall</u> 6th edition 2011
ROSS, S.A., WESTERFIELD, R.W. & JORDAN, B.D.	FUNDAMENTALS OF CORPORATE FINANCE. McGraw-Hill Irwin. 11th ed. 2015.

3P9: Industrial Economics, Strategy and Governance

Module summary	An introduction to the principles and practice of economics in order to understand the structure of industries and corporate strategy
Taught by	Dr C Velu (Module leader)
Assessment	100% by examination, Paper 5, combined with 3P8 Financial and Management Accounting
Supervision	Four supervisions will be offered in support of this course

Aims

The course is designed to situate firm practices and decisions in their wider economic context. The course aims to develop student understanding of the global economy and the evolving structure of industries and firms. It explores the key aspects of strategy formulation and the management of firms that shape the development of business.

Syllabus: Industrial Economics

Lecture	Syllabus	On completion students should be able to
1-2	The Global Economy, markets and industries	Understand the global economy and the changing structure of markets and industries.
	The importance of manufacturing	Understand the development of the
	The rise of the service economy	manufacturing and service industries.
	The role of strategy and strategic planning	Appreciate of different views of strategic planning
3-4	Firm boundaries	Understand the theory of the firm
		Understand the horizontal and vertical boundaries of the firm
5-6	Competitive analysis	Appreciate the analytical framework of standard microeconomics.
		Understand the principles of models of perfect competition, monopoly and oligopoly.
		Understand the economics of entry and exit
		Understanding dynamics of competing across time
7-8	Industry and strategic positioning	Appreciate the main issues affecting the macro environment
		Understand the benefits of coopetition
		Analyse how firms may respond strategically to its changing environment.
		Understand strategic positioning and competitive advantage
9-10	Resources and capabilities	Appreciate of positioning versus resource base view
		Sustaining competitive advantage

13-14	Strategic marketing	Understand the role of marketing in the execution of strategy
		Appreciation of marketing objectives and strategies
		Understand product and pricing
		Understand distribution and promotion
11-12	Business models and innovation	Understand the relationship between strategy, business models and tactics and its relationship to innovation
15-16	Strategy and governance	Appreciate departmentalisation, coordination and control
		Appreciate of organizational structures
		Understanding efficient information processing

Reading List

BESANKO, D., DRANOVE, D., SHANLEY, M. & SCHAEFER, S.	ECONOMICS OF STRATEGY, 6 th edition, <u>Wiley</u> . 2013
KOTLER, P.,KELLER, K.L. & BRADY, M.	MARKETING MANAGEMENT. <u>Prentice-Hall/Pearson Education</u> Global edition 2015
GRANT, R.	CONTEMPORARY STRATEGY ANALYSIS: Text and Cases, 8 TH edition, <u>Wiley</u> , 2013

3P10: Contemporary Issues in Manufacturing.

Module summary	a. Integrative industrial visits to study modern industrial practiceb. Lectures to introduce current topics
Taught by	Dr R Daly (Module leader), Dr C Barlow
Supporting activities	The module is linked with the industrial visits, which will enhance understanding of all lecture modules and provide examples of their application in modern manufacturing companies.
Assessment	100% by examination. There will be a 90 minute examination in which students will be required to answer one question from each of the three sections – modern industrial practice, industrial sustainability, and bio engineering
Supervision	 a. Whole group briefing and debriefing for each industrial visit b. Industrial Sustainability - One examples class for the whole group (1.5h) c. Medical Devices and Bio Materials - One examples class for whole group (1.5h)

Syllabus: Bioengineering, Medical Devices and Bio Materials

Syllabus	On completion students should be able to	
Introduction to medical devices, materials, required properties and tissue engineering	Understand the breadth of the medical device industry and the classification of devices.	
	Display familiarity with the range of synthetic and biomaterials used to form medical devices.	
The medical device industry Sector analysis in UK and international context	Explain the evolution and essential features of the medical device industry.	
	Explain the unique features and considerations of	
Regulatory bodies and their influence on manufacturing	this manufacturing sector how an understanding of the regulatory procedures that are followed.	
Key challenges in manufacturing of medical devices.	Explain the specific challenges faced in manufacturing of medical devices, e.g. sterilisation, Q.C., storage/transport.	
Future trends in medical devices and potential impact on manufacturing. E.g. Nanomanufacturing, personalised	Show awareness of trends in the industry and identify the challenges they pose to manufacturing.	
	Introduction to medical devices, materials, required properties and tissue engineering The medical device industry Sector analysis in UK and international context Regulatory bodies and their influence on manufacturing Key challenges in manufacturing of medical devices. Future trends in medical devices and potential impact on manufacturing.	

Syllabus: Industrial sustainability

Lecture	Syllabus	On completion students should be able to
1 The big	The industry landscape: The eco-impact of industrial activity. Energy and resource usage and security. "Triple bottom line"	Assess the contribution of industry to carbon emissions Discuss major resource implications

picture		relevant to manufacturing industry
2 The detailed picture	Measurement and legislation How do we assess the eco-impact of industry? What can we measure and how can we compare different environmental stressors? ISO, LCA., 'LCA Light'	Explain where the eco-impact of industry arises, including the role of supply chains and the implications of the product lifecycle Know what the legislation is Discuss the strengths and weaknesses of different metrics
3 Mitigation measures	How can eco-efficiency be improved? Design for sustainability Optimising materials and process selection The role and limitations of recycling Waste reduction measures Paradigm shifts: Product service systems; zero waste systems	Choose materials and processes to minimise eco-impact Discuss the role and limitations of recycling Identify sources of waste and suggest how waste may be reduced Be aware of radically different ways of meeting materials needs of society
4 Effecting industrial change	How and why do companies 'go green'? Case studies	Assess the eco-impact of a company and make reasoned proposals for how to reduce it.

Examinations

The tripos examination for 3P10 Contemporary Issues in Manufacturing will consist of three compulsory 30 minute questions, one on each of the lecture sets and one on the visits programme.

The **visits question** could ask for a comparison of a particular theme or group of themes across different sectors, or an overview description of practices seen in a sector, perhaps indicating good and less good examples.

Reading list - Industrial Sustainability

ALLWOOD, J.M., CULLEN, J.	Sustainable materials – with both eyes open		
	Available as download from the web http://www.uit.co.uk/B- SMWBEO/		
ASHBY, M.F.	Materials and the environment, Butterworth-Heinemann 2009, ISBN 978-1-85617-608-8		
VON WEISZACKER E, LOVINS A.B., LOVINS L.H.	Factor Four: doubling wealth, halving resource use. Earthscan publications, 1997,		
MACKAY, DJC	Sustainable energy – without the hot air, <u>www.withouthotair.com</u> , 2008		

Reading List - Bio Engineering: Medical Devices and Bio materials

Selected readings will be made available on Moodle

Coursework

Manufacturing Engineering Tripos IIa Page **57** of 68

CAD/CAM Exercise

Overview

The CAD/CAM coursework aims to develop and test the student's ability to produce engineering drawings using CAD, turn the CAD drawings into programmes for the production of the components, and operate the machine tool to produce the parts. The coursework contributes 50 marks. The group will be split into half, with one half producing drawings and programmes for the machining of a milled component, the other half for a turned component.

The CAD exercise is to be completed using SolidWorks. The CAM work is to be produced using SolidCam. There will be classroom support early in Michaelmas term in the use of both software packages.

Students will work in pairs, and be assessed as a pair.

Deliverables

Students will be provided with a simple assembly of 3 parts, 2 of which will have an engineering drawing. Each pair will be required to:

- produce a complete engineering drawing of the 3rd component in the assembly. This must be approved before any programming can begin;
- produce a programme to be loaded onto the machine tool.

Hand-in

The CAD drawings must be handed in on or before **9** a.m. Thursday **29**th October. They will be marked and returned by the end of the following week.

Your drawing must include your candidate numbers. A pdf file of your engineering drawing is to be submitted to the MET office, using the following file name structure, where you replace the numbers with your own: **70n_72x_CAM_date.pdf**

The CAM programmes must be handed in on or before **8:45 a.m**. Friday 4th December.

To hand in of CAM component of coursework, please create a zip file, named using the following convention: 70n_72x_CAM_date.zip

Assessment

The coursework is worth 30 marks in total.

- CAD drawing: 50% marks, awarded for completeness, clarity, precision and presentation
- CAM programme: 50% marks, awarded for elegance in programming

Production Game

Introduction

The Production Game is a simulation of a manufacturing operation. Small companies (teams) are required to manufacture simple paper-based products (greeting cards) based on orders from a market place. Products which meet the required standards of quality and delivery are purchased by the market. Unacceptable products are rejected.

The Production Game typically provides a rich array of first-hand experience with which to think about the issues involved in the organisation and control of manufacturing systems.

Students are required to submit two reports, a pre-game report, and a final report.

Deliverable 1: pre-game report

Each team is required to submit a report before the game starts outlining the following:

- Resource allocation: How are your resources going to be allocated?
- Production Layout: Are you going to go for a functional or a product-based layout?
- Order selection: What type of orders would you pick?
- Coordination and control: What co-ordinating (integrating) and scheduling mechanisms are you going to use?
- It is important to not only describe the strategies, but to describe the manner in which the strategy was formulated. Prior preparation (e.g., time study, cost-benefit analysis) will pay dividends.

Deliverable 2: Final report

Final report (individual): Each student should produce a report of a maximum of 1,500 words in length which analyses the performance and activities of their company during the Game. Where appropriate, draw on material from 3P3 and 3P4 in your report. The report should include treatment of at least some of the following issues:

- Did your strategy prove to be correct if so, why, if not, why not?
- How did you design, organize and control your manufacturing system? How did this reflect your wider strategic decisions vis a vis the market? What methods did you use to control costs, quality, time etc?
- How was whole enterprise managed? For example, how did coordination between 'Marketing and Sales' and 'Manufacturing', and 'Manufacturing' and 'Purchasing' occur? What formal and informal information systems were designed (or evolved) during the game? How appropriate were these?
- The things that you feel you did right, and the major errors you made; how you would do it differently next time.

• Comparisons between the performance and processes of your company and those of the other firms. Were there any patterns in who did well and who did badly?

Evaluation

The coursework will be marked out of 40 (to be checked), with the following allocation of marks to different activities:

- Pre-game report 25%
- Performance in the game 25%
- Final report 50%

Standard filenames for hand-in to: <u>met-admin@eng.cam.ac.uk</u> in the following format please:

Your group coursework numbers followed by the coursework name and date

e.g. 70n_71f_73x_ProdGame_date.doc or .pdf

Major Project

Overview

The Major Project runs from the end of Michaelmas term until the end of the academic year and aims to integrate the design, manufacturing and management elements of the course.

The main components of the project are the development of a viable design solution to a genuine problem or issue, in tandem with understanding the market and producing a comprehensive business plan. The business plan will also include some detailed analysis of the financial viability of the product.

At the end of the project, students should have:

- applied their engineering design skills to solve technical problems;
- applied their industrial design skills to develop solutions which are fit for the intended users, appropriately styled and clearly explained visually;
- applied their knowledge of materials and production engineering to produce solutions that could be produced in volume;
- explored issues relating to environmental, economic and social sustainability relating to their products;
- gained experience in market and user research;
- applied their skills in financial analysis to develop a robust business model for their proposed designs;
- developed their skills in producing a compelling and believable business plan.

Assessment

Detailed assessment criteria are outlined in the course handbook. In total, the project contributes 140 marks.

General information

Judge Business School: Information and library services

The Business Information Centre is located in the left-hand wing on the ground floor of the Judge Business School building.

Opening Hours

Term-time:		Vacation:	
Mon-Fri	08.45-18.00	Mon - Fri	09.00-17.00
Weekends	Closed	Weekends	Closed

Registration

Please register at the Information Centre desk when you first visit. You will need to present your University card and your email address.

Printed Resources

The Information Centre's printed collection includes core texts on Judge Business School reading lists, together with general research texts and journals. You may place reservations on books that are on loan and renew books that are not reserved by other users. Fines are charged for overdue items at 50p per day. You may borrow a maximum of 5 items.

Electronic Resources

Electronic resources are housed on the CJBS Information Blog (http://cjbsinfo.wordpress.com/) and a linked portal (for which you will need to use your Raven password) which can be accessed wherever you are in the world. *Databases available:*

- ABI Inform Complete
- Business Insights
- Business Source Complete
- Capital IQ
- Factiva
- Fame

- Global Insight
- Key Note
- Passport GMID
- Thomson One Banker
- WRDS (Compustat, CRSP, I/B/E/S & RiskMetrics)

In addition to the resources on the blog, we provide access to Bloomberg and Datastream on terminals in the Information Centre.

Staff and Contact Details

Please contact us by if you have any enquiries about our service:

Email: infolib@jbs.cam.ac.uk, Tel: 01223 339599

Guidance on referencing, collaboration and plagiarism

- 1. The confidence which a reader has in the contents of a report, paper or dissertation is based on trusting the author. An important contribution to building that trust is through the author demonstrating clearly how they have built on the work of others, and giving full credit to previous contributions, as well as indentifying unambiguously which parts of the overall work are their own, original contribution. That is the role of references in technical writing: to give recognition to other people's work and to provide an 'audit trail' of links to previous work. Developing a good style of referencing takes some effort; in many cases, facts and ideas are so well known and standard that no reference is needed, but if you have any doubts about whether the reader might misinterpret the extent of your own contribution you should always refer explicitly to the source of previous work.
- 2. In some of your work you will collaborate with other students. Not only does this often make sense in terms of splitting up a larger task into smaller parts, but it can also be a very fruitful method of generating new ideas. Learning how to manage and work within a collaborating team forms an important part of your training as an engineer. In some cases work which results from a team effort will be assessed for examination credit. In such cases all authors of the work must be clear among themselves as to which parts have been contributed by each member, and where required by the Examiners this should be indicated by initials at the bottom of each page.
- 3. If a report contains material of which you (or in the case of a collaborative report, a member of your team) are not the originator, then you must make the origin of the material explicitly clear by suitable references. Not to do so constitutes plagiarism, which is defined as 'submitting as your own work material which derives in part or in whole from the work of others without due acknowledgement'. Wherever you use sources of information or data such as books, journal articles, internal company sources, personal interviews, web-sites or other internet resources you should ensure that they are fully referenced, so that the reader can locate the source and if necessary make an independent judgement of the quality of the information. You should include text which you have not generated yourself only if it is clearly marked as a quotation (e.g. by placing it in quotation marks with a full reference to its source).
- 4. Plagiarism is both poor scholarship and a breach of academic integrity, and is regarded extremely seriously within the University. Plagiarism is a form of cheating and any incident in work assessed for examination credit will be reported to the Head of Department, who will normally refer the matter to the University Proctors.
- 5. Forms of plagiarism include copying someone else's language and/or ideas as if they are your own by, for example, quoting verbatim, paraphrasing, cutting and pasting from the internet, or submitting someone else's work as part of your own without full and explicit acknowledgement of the source. Plagiarism applies to all types of sources and media, whether published or not.
- 6. The guiding principle is that Examiners and others who may read your work must be in no doubt as to which parts of it are your own original work and which parts are the work of others, or have been produced by you in collaboration with others.

- 7. These guidelines apply to all assessed work: for example, coursework and project reports.
- 8. Further guidance can be found in the statement of the University's Policy on Plagiarism at www.admin.cam.ac.uk/univ/plagiarism. If you are uncertain about these guidelines or have any questions about their application, the MET Course Director will be glad to provide advice.

University of Cambridge General Board Statement on Plagiarism

The General Board, with the agreement of the Board of Examinations and the Board of Graduate Studies, has issued this guidance for the information of candidates, Examiners and Supervisors. It may be supplemented by course-specific guidance from Faculties and Departments.

Plagiarism is defined as submitting as one's own work that which derives in part or in its entirety from the work of others without due acknowledgement. It is both poor scholarship and a breach of academic integrity.

Examples of plagiarism include **copying** (using another person's language and/or ideas as if they are a candidate's own), by:

- quoting verbatim another person's work without due acknowledgement of the source;
- paraphrasing another person's work by changing some of the words, or the order of the words, without due acknowledgement of the source;
- using ideas taken from someone else without reference to the originator;
- cutting and pasting from the Internet to make a pastiche of online sources;
- **submitting** someone else's work as part of a candidate's own without identifying clearly who did the work. For example, buying or commissioning work via professional agencies such as 'essay banks' or 'paper mills', or not attributing research contributed by others to a joint project.

Plagiarism might also arise from colluding with another person, including another candidate, other than as permitted for joint project work (i.e. where collaboration is concealed or has been forbidden). A candidate should include a general acknowledgement where he or she has received substantial help, for example with the language and style of a piece of written work.

Plagiarism can occur in respect to all types of sources and media:

- *text, illustrations, musical quotations, mathematical derivations, computer code, etc;*
- material downloaded from websites or drawn from manuscripts or other media;
- published and unpublished material, including lecture handouts and other students' work.

Acceptable means of acknowledging the work of others (by referencing, in footnotes, or otherwise) vary according to the subject matter and mode of assessment. Faculties or Departments should issue written guidance on the relevant scholarly conventions for submitted work, and also make it clear to candidates what level of acknowledgement might be expected in written examinations. Candidates are required to familiarize themselves with

this guidance, to follow it in all work submitted for assessment, and may be required to sign a declaration to that effect. If a candidate has any outstanding queries, clarification should be sought from her or his Director of Studies, Course Director or Supervisor as appropriate.

Failure to conform to the expected standards of scholarship (e.g. by not referencing sources) in examinations may affect the mark given to the candidate's work. In addition, suspected cases of the use of unfair means (of which plagiarism is one form) will be investigated and may be brought to one of the University's Courts. The Courts have wide powers to discipline those found guilty of using unfair means in an examination, including depriving such persons of membership of the University.

The University's plagiarism and good academic practice website (<u>www.cam.ac.uk/plagiarism</u>) provides more information and guidance.

Student information on the use of Turnitin

The University subscribes to Turnitin UK software which is widely used in UK universities and matches text in work submitted to the software to that in a large database of online sources. This document explains how Turnitin UK will be used by the Department of Engineering and explains the implications of submitting your work to the software.

If you have not already done so, you are asked to read the information thoroughly and then sign the attached declaration to show that you consent to your work being submitted to Turnitin UK as described in this document. Without your written consent the Department of Engineering cannot submit your work to the software.

You are reminded that Turnitin is only one method of checking the originality of your work. Examiners may initiate the standard investigative procedures if they have unresolved queries about the originality of your work, regardless of whether Turnitin has been used or whether it has substantiated any concerns.

The University Advocate may decide to prosecute a student suspected of plagiarism even where that student has not consented to the use of Turnitin. In such circumstances the student may be specifically asked by the Advocate to consent to submission to Turnitin and a failure to consent will be proved as part of the evidence against him or her.

Plagiarism and good academic practice: your responsibilities

You should also familiarise yourself with the statement on plagiarism which is appended to this document. This statement is posted on the University's plagiarism website <u>www.cam.ac.uk/plagiarism</u> which also features links to useful resources and guidance.

If, after reading the guidance, you have any outstanding queries you should seek clarification at the earliest opportunity from your Director of Studies or supervisor.

About Turnitin UK text-matching software

Who controls the service?

Turnitin UK is part of the JISC Plagiarism Advisory Service (JISCPAS). This University is the recognised Data Controller for the data held and processed by, or on behalf of, the service. An American company, iParadigms, is the Data Processor.

How does Turnitin UK work?

Turnitin UK may detect direct plagiarism, paraphrasing and collusion as submitted work is compared with a vast database of online material and with a 'private' database of previous submissions. Therefore, submitting work to the database helps to protect it from future attempts to plagiarise it, and helps to maintain the integrity of the University's qualifications.

The software makes no judgement about whether a student has plagiarised, it simply shows the percentage of the submission that matches other sources and produces an originality report which highlights the text matches and, where possible, displays the matching text and its immediate context.

In many cases the software highlights correctly cited references or 'innocent' matches. Therefore, Examiners will carefully review all originality reports to determine whether the work does contain plagiarism.

How will Turnitin UK be used in the Manufacturing and Management Division, Department of Engineering?

Work submitted for assessment in the Manufacturing and Management Division, Department of Engineering will be subjected to spot checks from time to time, or in cases where there is cause for concern. Students should note that, upon screening work, the resulting originality reports will be referred only to the Examiners responsible for the academic assessment of the work if there is prima facie evidence of plagiarism or poor academic practice. Work must be submitted electronically.

What will happen if matches are identified between my work and another source?

If Turnitin UK detects matches between your work and another source, the Examiners will review the resulting originality report to judge whether the matches are innocent, or whether you have appropriately referenced these matches (if not, this may constitute plagiarism), and/or whether you have made excessive use of material from other sources (which may be poor academic practice).

The Examiners will mark your work purely on the basis of its academic merit. However, depending on the extent and context of the matches, your work may be referred to the Proctors for further investigation. In such cases the Turnitin UK originality report may be used as evidence. If you are found to have plagiarised the penalty may be severe and your degree may be withheld.

Will Turnitin UK affect my intellectual property rights or copyright?

The copyright and intellectual property rights of the submitted material remain wholly with the original owner (normally the student, with the exception of some collaborative or sponsored research projects). However, you are asked to permit Turnitin UK to:

- reproduce your work to assess it for originality;
- retain a copy of your work for comparison at a later date with future submissions.

Will my personal data be retained by Turnitin UK?

Material submitted to Turnitin UK will be identified by your examination number, course details and institution: personal data will not be used.

What will happen if text submitted by another student matches that in my work?

Matches to text submitted from other HE institutions

If a report generated by another institution identifies a match to your work the report will only show the extent of the match and the contact details of the University's Turnitin UK Administrator. If approached, the Turnitin UK Administrator will attempt to contact you about the matter. The contents of your work will not be revealed to a third party outside Cambridge without your permission.

Matches to text submitted from within the University

If a match is found to material submitted from within the University, the Examiners can obtain the full text without approaching you.

How do I apply for my work to be removed from Turnitin UK?

Work submitted to Turnitin UK will be stored indefinitely on the Turnitin UK database unless you specifically request that it be removed. To maximise the effectiveness of the software it is hoped that such requests will be kept to a minimum. However, once examinations have been concluded, you may at any time contact [the Department's Turnitin UK contact] to request that your work be removed.

Sources of further information and support

The University's plagiarism website: www.cam.ac.uk/plagiarism

Department's plagiarism advice: www.eng.cam.ac.uk/teaching/teachoff/study_skills/plagiarism.pdf

Plagiarism guidance in the Second Notice on Fourth-year Projects: www.eng.cam.ac.uk/teaching/courses/projects/yr4_proj/2ndNotice.pdf

Turnitin UK's website: www.submit.ac.uk