

EPSRC Centre for Innovative Manufacturing in INDUSTRIAL SUSTAINABILITY

Eco-Intelligent Manufacturing The Eco-Factory Grand Challenge – GC2.3

PRESENTED BY

Elliot Woolley, Alessandro Simeone & Nick Goffin Centre for SMART, Loughborough University

03/12/2015

Webinar Contents

- Introduction to eco-intelligent manufacturing
- Grand Challenge 2.3 Project Update + additional funded projects
- Clean-in-Place
- High Speed, Energy Efficient Manufacturing of Photovoltaics

Decision Making

UNIVERSITY OF

V CAMBRIDGE

Cranfield

UNIVERSITY

Louahborouah

University

• The cognitive process resulting in the selection of a course of action among several alternative possibilities

Pioneering research and skills **Imperial College**

London

Current tools:

- 1. Flow of materials,
- 2. Flow of costs
- 3. Flow of information

Three decision making timescales:

- 1. process control,
- 2. tactical and
- 3. strategic planning.

Eco-Intelligent Decision Making

- Extend scope of current manufacturing decision making, incorporating:
 - Environmental considerations
 - Intelligent techniques (artificial intelligence, neural networks, machine learning)

Pioneering research and skills

Eco-Intelligent Decision Making

Process Monitoring Approach

- Dynamometers
- Acoustic Emission
- Accelerometers
- Power and current sensors
- Image Acquisition
 - O High Speed Camera
 - Infrared Camera

- Statistical
- Time Domain
- Frequency Domain

Project Update

- GC2.3 Project July 2013 July 2016 (£311k)
- Body of 8 projects
- IR Monitoring \rightarrow Enterprise level energy management
- £285k EPSRC Feasibility fund for High Speed, Energy Efficient Manufacturing of Cadmium Telluride Solar Cells
- January 2015 July 2016
- ~£150k Innovate UK Technology Inspired Innovation Self-Optimising Clean-in-Place
- (subject to our consortium accepting the offer and submitting the required documents)
- January 2016 December 2016

EPSRC Centre for Innovative Manufacturing in INDUSTRIAL SUSTAINABILITY

Clean-in-place Monitoring A. SIMEONE

Introduction CLEAN-IN-PLACE PROCESS

O Definition

• Cleaning industrial equipment without disassembling.

O Main Issues

- Use of hazardous chemicals
- Use of water and energy
- O Time
- State-Of-The-Art
 - Manual inspection methodologies

Objective

• Real-time monitoring system

Research Methodology

Research Methodology

Ice Cream

1. FOULING APPLICATION

Riboflavin

Research Methodology 2. WASHING CYCLE

Research Methodology IMAGE ACQUISITION

Research Methodology

Research Methodology

5. DECISION MAKING SUPPORT - TRANSFORMATION OF PIXELS IN MM²

Bottom

• 1cm² ~ 2000px

Side

• 1cm² ~ 3000px

Decision Making THICKNESS ANALYSIS

Pioneering research and skills

Riboflavin

Yogurt

Ice Cream

Results ICE CREAM TESTS

Parameter		Value
Test ID		12
Date		21 July 2015
Fouling agent		Ice cream
Fouling quantity		250 g
Water Temperature		20 °C
Detergent		None
	Exposure	1/100 sec.
	F-stop	f/4
Camera	ISO	6400
configuration	White balance	Manual
	Time Lapse	5 sec.

- Experimental campaign of 15 tests using 3 different fouling agents was carried out.
- Images were remote and automated acquired using a set of UV lights and a digital camera.
- Image processing was carried out extracting the Green Channel of every image and transforming it into a Black and White image.
- Fouling pixels in the Black and White images were transformed into surface units through the application of an experimental methodology.
- Fouling removal and water flow vs cleaning time were represented in plots for every test performed.

Imperial College

Future work

Thickness and intensity correlation Thickness (mm) ≈ pixel intensity · θ θ to be determined experimentally

EPSRC Centre for Innovative Manufacturing in INDUSTRIAL SUSTAINABILITY

High Speed, Energy Efficient Manufacturing of Photovoltaics

PRESENTED BY

Nick Goffin

Centre for SMART, Loughborough University

03/12/2015

Embedded energy

CdTe (46%)

- Embedded energy is the energy required to manufacture the PV module.
- Embedded energy from different types of PV module (Peng *et al.*) (mean values):
 - Mono-silicon PV ~ 3400 MJ/m²
 - Multi-silicon PV ~ 3800 MJ/m²
 - Thin-film PV technologies:
 - a-Si ~ 1200 MJ/m²
 - CIGS ~ 1070 MJ/m²
 - CdTe ~ **920 MJ/m**²

Optical inspection of CdTe panels

• Stacking faults and voids cause failures in panels.

• Advantages of using an optical inspection system:

- In-situ, non-invasive measurements
- Can provide high-speed online real-time analysis
- Allows panel quality to be inspected while in production

Optical Inspection of CdTe panels

Using lasers for CdTe annealing

- Current annealing processes typically use a furnace to heat the entire panel for approximately 8 mins
 - Energy intensive
 - Inefficient
 - O Slow
- The use of a laser offers improvements:
 - Energy reduction by only heating the top surface rather than the entire panel
 - Decrease in annealing time from 8 mins down to approximately 15 seconds
 - Energy resilience the ability to halt process at any time with no repercussions
 - "Reel-to-reel" continuous production rather than batch production
 - Use of polymer or other non-glass substrate

Laser beam characterisation

• Laser beams take on a TEM₀₀ energy distribution

EPSR

Pioneering research and skills

Using Holographic Optical Elements for thermal control

- Laser beam thermal control is achieved via use of
- Holographic Optical Elements (HOE's)

• HOE's are manufactured either using e-beams or plasma etching, based on a computer-generated image

0

Imperial College London

SMART

Laser beam optimisation

SMART

Pioneering research and skills

Laser annealing equipment

.ouahborouah

Jniversitv

- 808 nm wavelength selected as optimum
 - Long enough for infrared thermal processing
 - But not too long CdTe is transparent to the majority of the infrared spectrum

and skills

Imperial College

London

Laser annealing tests

EPSRC

Pioneering research and skills DIC optical micrograph of unprocessed surface

DIC optical micrograph of processed surface

Loughborough University

Cranfield

Conclusions

- Solar photovoltaics are growing in importance worldwide, with CdTe thin film technology showing the most promise for development
- Optical inspection offers the ability to detect manufacturing faults non-invasively in real time
- Laser annealing offers advantages compared to traditional methods, principally:
 - O Speed
 - Energy efficiency
 - Energy resilience
- Thermal effects of 808 nm laser beams have been observed experimentally. Experiments with holographic optics are due to commence

